Recent Progress on Research of Contact Resistance of Carbon Nanotubes

Article Preview

Abstract:

This paper reviews the recent progress on the research of contact resistance of carbon nanotubes (CNTs), including the contact resistance between CNTs and electrodes/metals and that between CNTs. In particular, the current research advances in improving CNT contact resistance are presented. The challenges in improving CNT contact resistance are also addressed from a practical point of view. A thorough understanding of the electrical contact properties of CNTs helps to explore new methods to improve their contact resistance for full application of this unique group of materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

447-452

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Naeemi, J.D. Meindl, Carbon nanotube interconnects, Annu. Rev. Mater. Res. 39 (2009) 255-257.

DOI: 10.1146/annurev-matsci-082908-145247

Google Scholar

[2] H. Fujii, S. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect, Appl. Phys. Lett. 90 (2007) 153108.

DOI: 10.1063/1.2721876

Google Scholar

[3] Z.P. Wu, B.Y. Xia, X.X. Wang, J.N. Wang, Preparation of dispersible double-walled carbon nanotubes and application as catalyst support in fuel cells, J. Power Sources 195 (2010) 2143-2148.

DOI: 10.1016/j.jpowsour.2009.10.013

Google Scholar

[4] Y. Yan, M.B. Chan-Park, Q. Zhang, Advances in carbon-nanotube assembly, Small 3 (2007) 24-42.

Google Scholar

[5] S. Taeger, M. Mertig, Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis, Int. J. Mater. Res. 98 (2007) 742-748.

DOI: 10.3139/146.101530

Google Scholar

[6] R. Krupke, F. Hennrich, H.B. Weber, M.M. Kappes, H.V. Löhneysen, Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis, Nano Lett. 3 (2003) 1019-1023.

DOI: 10.1021/nl0342343

Google Scholar

[7] Q. Ngo, D. Petranovic, H. Yoong, S. Krishnan, C.Y. Yang, Surface phenomena at metal-carbon nanotube interfaces, Proceedings of the 2003 third IEEE Conference on Nanotechnology, vol. 2, 252-255, Aug. 12-14, 2003, San Francisco, CA USA.

DOI: 10.1109/nano.2003.1231763

Google Scholar

[8] A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schonenberger, J. -P. Salvetat, J. -M. Bonard, L. Forro, Cotacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements, Appl. Phys. Lett. 73 (1998) 274-276.

DOI: 10.1063/1.121778

Google Scholar

[9] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73 (1998) 2447-2449.

DOI: 10.1063/1.122477

Google Scholar

[10] A. Bezryadin, A.R.M. Verschueren, S.J. Tans, R. E. Smalley, C. Dekker, Multiprobe transport experiments on individual single-wall carbon nanotubes, Phys. Rev. Lett. 80 (1998) 4036-4039.

DOI: 10.1103/physrevlett.80.4036

Google Scholar

[11] L. An, C.R. Friedrich, Measurement of contact resistance of multiwall carbon nanotubes by electrical contact using a focused ion beam, Nucl. Instrum. Meth. B 272 (2012) 169-172.

DOI: 10.1016/j.nimb.2011.01.058

Google Scholar

[12] J. Tersoff, Contact resistance of carbon nanotubes, Appl. Phys. Lett. 74 (1999) 2122-2124.

DOI: 10.1063/1.123776

Google Scholar

[13] Y. Xue, S. Datta, Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy, Phys. Rev. Lett. 83 (1999) 4844-4847.

DOI: 10.1103/physrevlett.83.4844

Google Scholar

[14] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors, Nature 424 (2003) 654-657.

DOI: 10.1038/nature01797

Google Scholar

[15] M. P. Anantram, Which nanowire couples better electrically to a metal contact: armchair or zigzag nanotube, Appl. Phys. Lett. 78 (2001) 2055-(2058).

DOI: 10.1063/1.1360228

Google Scholar

[16] M.P. Anantram, S. Datta, Y. Xue, Coupling of carbon nanotubes to metallic contacts, Phys. Rev. B 61 (2000) 14219-14224.

DOI: 10.1103/physrevb.61.14219

Google Scholar

[17] B.Q. Wei, R. Vajtai, P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett. 79 (2001) 1172-1174.

DOI: 10.1063/1.1396632

Google Scholar

[18] A.N. Andriotis, M. Menon, G.E. Froudakis, Various bonding configurations of transition-metal atoms on carbon nanotubes: their effect on contact resistance, Appl. Phys. Lett. 76 (2000) 3890-3892.

DOI: 10.1063/1.126811

Google Scholar

[19] S.B. Schujman, R. Vajtai, S. Biswas, B. Dewhirst, L.J. Schowalter, P. Ajayan, Electrical behavior of isolated multiwall carbon nanotubes characterized by scanning surface potential microscopy, Appl. Phys. Lett. 81 (2002) 541-543.

DOI: 10.1063/1.1490401

Google Scholar

[20] S.C. Lim, J.H. Jang, D.J. Bae, G.H. Han, S. Lee, I. -S. Yeo, Y.H. Lee, Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability, Appl. Phys. Lett. 95 (2009) 264103.

DOI: 10.1063/1.3255016

Google Scholar

[21] D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai, Ballistic transport in metallic nanotubes with reliable ohmic contacts, Nano Lett. 3 (2003) 1541-1544.

DOI: 10.1021/nl034700o

Google Scholar

[22] K. Woong, A. Javey, R. Tu, J. Cao, Q. Wang, Electrical contacts to carbon nanotubes down to 1 nm in diameter, Appl. Phys. Lett. 87 (2005) 173101.

DOI: 10.1063/1.2108127

Google Scholar

[23] J-O. Lee, C. Park, J-J. Kim, J.W. Park, K-Y Yoo, Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method, J. Phys. D Appl. Phys. 33 (2000) 1953-(1956).

DOI: 10.1088/0022-3727/33/16/303

Google Scholar

[24] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett. 80 (2002) 2773-2775.

DOI: 10.1063/1.1467702

Google Scholar

[25] Y. Woo, G.S. Duesberg, S. Roth, Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing, Nanotechnology 18 (2007) 095203.

DOI: 10.1088/0957-4484/18/9/095203

Google Scholar

[26] C. Chen, L. Liu, Y. Lu, E.S. Kong, Y. Zhang, X. Sheng, H. Ding, A method for creating reliable and low-resistance contacts between carbon nanotubes and microelectrodes, Carbon 45 (2007) 436-442.

DOI: 10.1016/j.carbon.2006.08.021

Google Scholar

[27] A. Ando, T. Shimizu, H. Abe, Y. Nakayama, H. Tokumoto, Improvement of electrical contact at carbon nanotube/Pt by selective electron irradiation, Physica E 24 (2004) 6-9.

DOI: 10.1016/j.physe.2004.04.014

Google Scholar

[28] A. Buldum, J. P. Lu, Contact resistance between carbon nanotubes, Phys. Rev. B 63 (2001) 161403.

Google Scholar

[29] N. Ranjan, M. Mertig, Dielectrophoretically assembled carbon nanotube-metal hybrid structures with reduced contact resistance, Phys. Status Solidi B 245 (2008) 2311-2314.

DOI: 10.1002/pssb.200879582

Google Scholar