Hierarchical Porous TiO2 Fibre Synthesized by Cotton Template and its Photocatalytic Performance

Article Preview

Abstract:

Hierarchical porous TiO2 fibre was successfully synthesized using cotton as template. Microstructures of product were characterized by Field Emission Scanning Electron Microscope (FESEM), nitrogen absorption-desorption technique and transmission electron microscopy (TEM). Titanium oxide material was characterized by repetitious networks consisting of the fibres with diameter of ca. 3-8 μm. The results showed that the products were composed 2-5 nm piled pores stacked by polycrystalline TiO2 nanoparticles. The small crystallite diameter (6-10 nm) and the high specific surface area (83.7 m2·g-1) of sample was believed to be resulted from wide-angle X-ray Diffraction (XRD), high resolution TEM (HRTEM) and the BET method. While the concentration of methylthionine chloride solution was 20 mg/L, catalyst amount 0.1 g/L, the reaction had a higher decoloring rate following irradiation with a UV light source, the decoloring rate can reach over 100% after 250 min.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

459-465

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Heuer, D.J. Fink, V. J Laraia, Innovative Materials Processing Strategies: A Bio-mimetic Approach, Science 255 (1992) 1098-1105.

Google Scholar

[2] H. Sieber, Biomimetic Synthesis of Ceramics and Ceramic Composites, Mater. Sci. Eng. A 412 (2005) 43-47.

Google Scholar

[3] P. Greil, Biomorphous Ceramics from Lignocellulosics, J. Eur. Ceram. Soc. 1 (2001) 1085-1088.

Google Scholar

[4] A. Herzog, R. Klingner, U. Vogt, Wood-Derived Porous SiC Ceramics by Sol Infil-tration and Carbothermal Reduction, J. Am. Ceram. Soc. 7 (2004) 784-793.

DOI: 10.1111/j.1551-2916.2004.00784.x

Google Scholar

[5] C.M. Lieber, One-dimensional nanostructures: Chemistry, physics & applicationsb, Solid State Commun. 107 (1998) 607-616.

DOI: 10.1016/s0038-1098(98)00209-9

Google Scholar

[6] A.P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 271 (1996) 933-937.

DOI: 10.1126/science.271.5251.933

Google Scholar

[7] C. Feldmann, Preparation of nanoscale pigment particles, Adv. Maten. 13 (2001) 1301-1303.

Google Scholar

[8] K.L. Frindell, M.H. Bartl, A. Popitsch, G.D. Stucky, Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films, Angew. Chem. 114 (2002) 1001-1004.

DOI: 10.1002/1521-3757(20020315)114:6<1001::aid-ange1001>3.0.co;2-8

Google Scholar

[9] Q. Dong, H. l Su, F. Song, Hierarchical Metal Oxides Assembled by Nanocrystallites Via a Simple Bio-Inspired Route, J. Am. Ceram. Soc. 90 (2007) 376-380.

DOI: 10.1111/j.1551-2916.2006.01392.x

Google Scholar

[10] S.R. Hall, H. Bolger, S. Mann, Morphosynthesis of complex inorganic forms using pollen grain templates, Chem. Commum. 22 (2003) 2784-2785.

DOI: 10.1039/b309877j

Google Scholar

[11] X. Li, T. Fan, H. Zhou, Enhanced Light-Harvesting and Photocalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates, Adv. Funct. Mater. 19(2009) 45-56.

DOI: 10.1002/adfm.200800519

Google Scholar

[12] W. Zhang, D. Zhang, T. Fan, Novel Photoanode Structure Templated from Butterfly Wing Scales, Chem. Mater. 21 (2009) 33-45.

DOI: 10.1021/cm702458p

Google Scholar

[13] G. Kostovski, D.J. White, A. Mitchell, Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing, Biosens. Bioelectron. 24 (2009) 1531-1535.

DOI: 10.1016/j.bios.2008.10.016

Google Scholar

[14] S. Singh, U.M. Bhatta, P.V. Satyam, Bacterial synthesis of silicon/silica nanocom-posites, J. Mater. Chem. 18 (2008) 2601-2606.

Google Scholar

[15] S. Xu, L. Li, Z. Du, A netlike DNA-templated Au nanoconjugate as the matrix of the direct electrochemistry of horseradish peroxidase, Electrochem. Commun. 11 (2009) 327.

DOI: 10.1016/j.elecom.2008.12.002

Google Scholar

[16] A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.

DOI: 10.1021/cr00033a003

Google Scholar

[17] L. Linsebigler, G.Q. Lu, J.T. Yates, Photocatalysis on TiO2 surface: Principles, me-chanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[18] M.R. Hoffmann, S.T. Martin, W.Y. Choi, Environmental applications of semi-conductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

Google Scholar

[19] D.Y. Zhang, L. Qi, Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes, Chem. Comm. 24 (2005) 2735-2737.

DOI: 10.1039/b501933h

Google Scholar

[20] S.W. Kim, T.H. Han, J. Kim, Fabrication and Electrochemical Characterization of TiO2 Three-Dimensional Nanonetwork Based on Peptide Assembly, ACS Nano 3 (2009) 1085-1090.

DOI: 10.1021/nn900062q

Google Scholar