[1]
R.L. Moy, A. Lee and A. Zalka. Commonly used suture materials in skin surgery. Am. Fam. Physician, 44 (1991), p.2123.
Google Scholar
[2]
S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo and S. Mizuno. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6 : 6 : 1 molar ratio. J. Biol. Chem., 275 (2000).
DOI: 10.1074/jbc.m006897200
Google Scholar
[3]
C. Veparia and D. L. Kaplan. Silk as a Biomaterial. Prog. Polym. Sci., 32 (2007), pp.991-1007.
Google Scholar
[4]
T.Y. Zhong, C.M. Deng, Y.F. Gao, M. Chen and B.Q. Zuo. Studies of in situ-forming hydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution. J. Biomed. Mater. Res. Part A., 100A (2012), p.1983-(1989).
DOI: 10.1002/jbm.a.33307
Google Scholar
[5]
F. Zhang, B.Q. Zuo, H.X. Zhang and L. Bai. Studies of electrospun regenerated SF/TSF nanofibers. Polymer, 50 (2009), pp.279-285.
DOI: 10.1016/j.polymer.2008.10.053
Google Scholar
[6]
M. Fini, A. Motta, P. Torricelli, G. Glavaresi, N.N. Aldini, M. Tschon and et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials, 26 (2005), p.3527–3536.
DOI: 10.1016/j.biomaterials.2004.09.040
Google Scholar
[7]
Z.B. Cao, X. Chen, J.R. Yao, L. Huang and Z.Z. Shao. The preparation of regenerated silk fibroin microspheres. Soft Matter, 3 (2007), pp.910-915.
DOI: 10.1039/b703139d
Google Scholar
[8]
A. Matsumoto, J.S. Chen, A.L. Collette, U.J. Kim and G.H. Altman. Mechanisms of Silk Fibroin Sol-Gel Transitions. J. Phys. Chem. B, 110 (2006), pp.21630-21638.
DOI: 10.1021/jp056350v
Google Scholar
[9]
U.J. Kim, J. Park, C.M. Li, H.J. Jin and V. Regina. Structure and properties of silk hydrogels. Biomacromolecules, 5 (2004), pp.786-792.
Google Scholar
[10]
T. Yucel, P. Cebe and D.L. Kaplan. Vortex-Induced Injectable Silk Fibroin Hydrogels. Biophys. J., 97 (2009), p.2044–(2050).
DOI: 10.1016/j.bpj.2009.07.028
Google Scholar
[11]
Q. Lu, Y.L. Huang, M.Z. Li, B.Q. Zuo, S.Z. Lu, J.N. Wang and et al. Silk fibroin electrogelation mechanisms. Acta Biomater., 7 (2011), p.2394–2400.
DOI: 10.1016/j.actbio.2011.02.032
Google Scholar
[12]
K. Numata, T. Katashima and T. Sakai. State of Water, Molecular Structure, and Cytotoxicity of Silk Hydrogels. Biomacromolecules, 12 (2011), p.2137–2144.
DOI: 10.1021/bm200221u
Google Scholar
[13]
G.H. Altman, F. Diaz, C. Jakuba, T. Calabro and R.L. Horan. Silk based biomaterials. Biomaterials, 24 (2003), p.401–416.
DOI: 10.1016/s0142-9612(02)00353-8
Google Scholar
[14]
N. Guziewicz, A. Best, B. Perez-Ramirez and D.L. Kaplan. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 32 (2011), pp.2642-2650.
DOI: 10.1016/j.biomaterials.2010.12.023
Google Scholar
[15]
E.S. Gil, R.J. Spontak and S.M. Hudson. Macromol. Effect ofβ-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin. Biosci., 5 (2005), p.702–709.
DOI: 10.1002/mabi.200500076
Google Scholar
[16]
D. Attwood and A.T. Florence. Surfactant systems: Their chemistry, pharmacy, and biology, Chapman and Hall, London and New York, (1983).
Google Scholar
[17]
X.F. Zhang, G.W. Lu, X.M. Wen and H. Yang. Molecular-dynamics investigation into the adsorption of oil-water-surfact mixture on quartz. Appl. Surf. Sci., 255 (2009), pp.6493-6498.
Google Scholar
[18]
D. Myers. Surfactant Science and Technology, third ed., Hoboken, USA, (2005).
Google Scholar
[19]
G.M. Kamande, J. Baah, K.J. Cheng, T.A. McAllister and J.A. Shelford. Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes. J. Dairy. Sci., 83 (2000).
DOI: 10.3168/jds.s0022-0302(00)74913-7
Google Scholar
[20]
Y.Y. Cheng and J.P. Yang. Solubilization of non-steroidal anti-inflammatory drugs in the presence of tween series surfactants. Phys. Chem. Liq., 44 (2006), pp.249-256.
DOI: 10.1080/00319100500493063
Google Scholar
[21]
X. Chen, Z.Z. Shao, N.S. Marinkovic, L. M. Miller, P. Zhou and M.R. Chance. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys. Chem., 89 (2001), p.25–34.
DOI: 10.1016/s0301-4622(00)00213-1
Google Scholar
[22]
H.J. Jin and D.L. Kaplan. Mechanism of silk processing in insects and spiders. Nature, 424 (2003), pp.1057-1061.
DOI: 10.1038/nature01809
Google Scholar