[1]
S. Kalinichenka, L. Rontzsch, B. Kieback, Structural and hydrogen storage properties of melt-spun Mg-Ni-Y alloys, International Journal of Hydrogen Energy. 34 (2009) 7749-7755.
DOI: 10.1016/j.ijhydene.2009.07.053
Google Scholar
[2]
B. Zberg, P.J. Uggowitzer, J.F. Loffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Materials. 8 (2009) 887-891.
DOI: 10.1038/nmat2542
Google Scholar
[3]
X. Gu, G.J. Shiflet, F.Q. Guo, S.J. Poon, Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility, J. Mater. Res. 20 (2005) 1935-(1938).
DOI: 10.1557/jmr.2005.0245
Google Scholar
[4]
K. Amiya, A. Inoue, Thermal stability and mechanical properties of Mg-Y-Cu-M (M = Ag, Pd) bulk amorphous alloys, Mater. Trans. 41 (2000) 1460-1462.
DOI: 10.2320/matertrans1989.41.1460
Google Scholar
[5]
H. Men, D.H. Kim, Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere, J. Mater. Res. 18 (2003) 1502-1504.
DOI: 10.1557/jmr.2003.0207
Google Scholar
[6]
H. Men, W.T. Kim, D.H. Kim, Fabrication and Mechanical Properties of Mg65Cu15Ag5Pd5Gd10 Bulk Metallic Glass, Mater. Trans. 44 (2003) 2141-2144.
Google Scholar
[7]
H. Men, W.T. Kim, D.H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx (x = 0, 5 and 10) alloys, Journal of Non-Crystalline Solids. 337 (2004) 29-35.
DOI: 10.1016/j.jnoncrysol.2004.03.110
Google Scholar
[8]
E.S. Park, W.T. Kim, D.H. Kim, Bulk glass formation in Mg-Cu-Ag-Y-Gd alloy, Mater. Trans. 45 (2004) 2474-2477.
DOI: 10.2320/matertrans.45.2474
Google Scholar
[9]
H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma, Doubling the critical size for bulk metallic glass formation in the Mg-Cu-Y ternary system, J. Mater. Res. 20 (2005) 2252-2255.
DOI: 10.1557/jmr.2005.0307
Google Scholar
[10]
H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space, Appl. Phys. Lett. 87 (2005) 1-3.
DOI: 10.1063/1.2126794
Google Scholar
[11]
H. Ma, E. Ma, J. Xu, A new Mg65Cu7. 5Ni7. 5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability, J. Mater. Res. 18 (2003) 2288-2291.
DOI: 10.1557/jmr.2003.0319
Google Scholar
[12]
Q. Zheng, H. Ma, E. Ma, J. Xu, Mg-Cu-(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity, Scripta Mater. 55 (2006) 541-544.
DOI: 10.1016/j.scriptamat.2006.05.029
Google Scholar
[13]
Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system, Scripta Mater. 56 (2007) 161-164.
DOI: 10.1016/j.scriptamat.2006.09.023
Google Scholar
[14]
Q. Zheng, J. Xu, E. Ma, High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys, J. Appl. Phys. 102 (2007) 113519.
DOI: 10.1063/1.2821755
Google Scholar
[15]
J. Yin, G.Y. Yuan, P.F. Wang, J. Zhang, Z.H. Chu, W.J. Ding, Effects of the partial substitutional alloying elements on the crystallization behavior of Mg65Cu25Gd10 metallic glass: Ag versus Ni, J. Alloys Compd. 481 (2009) 407-410.
DOI: 10.1016/j.jallcom.2009.03.010
Google Scholar
[16]
L.L. Shi, J. Xu, Mg based bulk metallic glasses: Glass transition temperature and elastic properties versus toughness, Journal of Non-Crystalline Solids. 357 (2011) 2926-2933.
DOI: 10.1016/j.jnoncrysol.2011.03.035
Google Scholar
[17]
G. Yuan, C. Qin, A. Inoue, Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain, J. Mater. Res. 20 (2005) 394-400.
DOI: 10.1557/jmr.2005.0044
Google Scholar
[18]
G. Yuan, A. Inoue, The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys, J. Alloys Compd. 387 (2005) 134-138.
DOI: 10.1016/j.jallcom.2004.06.022
Google Scholar
[19]
E.S. Park, H.J. Chang, D.H. Kim, Mg-rich Mg-Ni-Gd ternary bulk metallic glasses with high compressive specific strength and ductility, J. Mater. Res. 22 (2007) 334-338.
DOI: 10.1557/jmr.2007.0034
Google Scholar
[20]
J. Yin, G.Y. Yuan, Z.H. Chu, J. Zhang, W.J. Ding, Mg-Ni-(Gd, Nd) bulk metallic glasses with improved glass-forming ability and mechanical properties, J. Mater. Res. 24 (2009) 2130-2140.
DOI: 10.1557/jmr.2009.0255
Google Scholar
[21]
H. Peng, S.S. Li, Y.P. Qi, T.Y. Huang, Mg-Ni-Gd-Ag bulk metallic glass with improved glass-forming ability and mechanical properties, Intermetallics. 19 (2011) 829-832.
DOI: 10.1016/j.intermet.2010.11.029
Google Scholar
[22]
T. Shibata, A. Inoue, T. Masumoto, Formation, thermal-stability and and mechanical-properties of amrophous alloys in the Mg-transition metal(Ni, Cu)-alkaline-earth metal(Ca, Sr, Ba) system, Journal of Materials Science. 28 (1993) 379-383.
DOI: 10.1007/bf00357812
Google Scholar
[23]
H. Ma, L.L. Shi, J. Xu, E. Ma, Chill-cast in situ composites in the pseudo-ternary Mg-(Cu, Ni)-Y glass-forming system: Microstructure and compressive properties, J. Mater. Res. 22 (2007) 314-325.
DOI: 10.1557/jmr.2007.0032
Google Scholar
[24]
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.
DOI: 10.1016/s1359-6454(99)00300-6
Google Scholar
[25]
F.R. Boer, R. Boom, W.C.M. Matterns, A.R. Miedema, A.K. Niessen, Cohesion in Metals[M]. Elsevier Science: New York, 1988, p.314.
Google Scholar
[26]
M.X. Xia, S.G. Zhang, J.G. Li, C.L. Ma, Thermal stability and its prediction of bulk metallic glass systems, Appl. Phys. Lett. 88 (2006) 261913.
DOI: 10.1063/1.2218324
Google Scholar
[27]
L. Xia, S.S. Fang, Q. Wang, Y.D. Dong, C.T. Liu, Thermodynamic modeling of glass formation in metallic glasses, Appl. Phys. Lett. 88 (2006) 171905.
DOI: 10.1063/1.2198830
Google Scholar