Formation of a New Mg-Cu-Ni-Gd Bulk Metallic Glass: Effects of Rare Earth on Glass-Forming Ability of Mg-Tm-Re Bulk Metallic Glasses

Article Preview

Abstract:

A new Mg65Cu18Ni6Gd11 bulk metallic glass (BMG) with high level of Ni content, exhibiting glass-forming ability (GFA) of 6 mm, was fabricated by copper mold casting. The compressive strength and plasticity of the Mg65Cu18Ni6Gd11 BMG were 938 MPa and 0.14%, respectively. The composition design of the Mg65Cu18Ni6Gd11 BMG with enhanced GFA had succeeded simply using Gd substituting Y in the Mg65Cu18Ni6Y11 BMG, which was a result of a comparison on the GFA between the Mg-TM-Gd and Mg-TM-Y BMGs (TM: transition metals). Compared to the Mg-TM-Y BMGs, the Mg-TM-Gd BMGs exhibited improved GFA, which was demonstrated to be mainly attributed to the more negative amorphous formation enthalpy resulting from Gd substituting Y. The effects of rare earth (RE) elements on the GFA of Mg-TM-RE were discussed. This work may suggest an easy way for developing new Mg-based BMGs with improved GFA by rare earth (RE) design.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

217-222

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kalinichenka, L. Rontzsch, B. Kieback, Structural and hydrogen storage properties of melt-spun Mg-Ni-Y alloys, International Journal of Hydrogen Energy. 34 (2009) 7749-7755.

DOI: 10.1016/j.ijhydene.2009.07.053

Google Scholar

[2] B. Zberg, P.J. Uggowitzer, J.F. Loffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Materials. 8 (2009) 887-891.

DOI: 10.1038/nmat2542

Google Scholar

[3] X. Gu, G.J. Shiflet, F.Q. Guo, S.J. Poon, Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility, J. Mater. Res. 20 (2005) 1935-(1938).

DOI: 10.1557/jmr.2005.0245

Google Scholar

[4] K. Amiya, A. Inoue, Thermal stability and mechanical properties of Mg-Y-Cu-M (M = Ag, Pd) bulk amorphous alloys, Mater. Trans. 41 (2000) 1460-1462.

DOI: 10.2320/matertrans1989.41.1460

Google Scholar

[5] H. Men, D.H. Kim, Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere, J. Mater. Res. 18 (2003) 1502-1504.

DOI: 10.1557/jmr.2003.0207

Google Scholar

[6] H. Men, W.T. Kim, D.H. Kim, Fabrication and Mechanical Properties of Mg65Cu15Ag5Pd5Gd10 Bulk Metallic Glass, Mater. Trans. 44 (2003) 2141-2144.

Google Scholar

[7] H. Men, W.T. Kim, D.H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx (x = 0, 5 and 10) alloys, Journal of Non-Crystalline Solids. 337 (2004) 29-35.

DOI: 10.1016/j.jnoncrysol.2004.03.110

Google Scholar

[8] E.S. Park, W.T. Kim, D.H. Kim, Bulk glass formation in Mg-Cu-Ag-Y-Gd alloy, Mater. Trans. 45 (2004) 2474-2477.

DOI: 10.2320/matertrans.45.2474

Google Scholar

[9] H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma, Doubling the critical size for bulk metallic glass formation in the Mg-Cu-Y ternary system, J. Mater. Res. 20 (2005) 2252-2255.

DOI: 10.1557/jmr.2005.0307

Google Scholar

[10] H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space, Appl. Phys. Lett. 87 (2005) 1-3.

DOI: 10.1063/1.2126794

Google Scholar

[11] H. Ma, E. Ma, J. Xu, A new Mg65Cu7. 5Ni7. 5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability, J. Mater. Res. 18 (2003) 2288-2291.

DOI: 10.1557/jmr.2003.0319

Google Scholar

[12] Q. Zheng, H. Ma, E. Ma, J. Xu, Mg-Cu-(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity, Scripta Mater. 55 (2006) 541-544.

DOI: 10.1016/j.scriptamat.2006.05.029

Google Scholar

[13] Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system, Scripta Mater. 56 (2007) 161-164.

DOI: 10.1016/j.scriptamat.2006.09.023

Google Scholar

[14] Q. Zheng, J. Xu, E. Ma, High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys, J. Appl. Phys. 102 (2007) 113519.

DOI: 10.1063/1.2821755

Google Scholar

[15] J. Yin, G.Y. Yuan, P.F. Wang, J. Zhang, Z.H. Chu, W.J. Ding, Effects of the partial substitutional alloying elements on the crystallization behavior of Mg65Cu25Gd10 metallic glass: Ag versus Ni, J. Alloys Compd. 481 (2009) 407-410.

DOI: 10.1016/j.jallcom.2009.03.010

Google Scholar

[16] L.L. Shi, J. Xu, Mg based bulk metallic glasses: Glass transition temperature and elastic properties versus toughness, Journal of Non-Crystalline Solids. 357 (2011) 2926-2933.

DOI: 10.1016/j.jnoncrysol.2011.03.035

Google Scholar

[17] G. Yuan, C. Qin, A. Inoue, Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain, J. Mater. Res. 20 (2005) 394-400.

DOI: 10.1557/jmr.2005.0044

Google Scholar

[18] G. Yuan, A. Inoue, The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys, J. Alloys Compd. 387 (2005) 134-138.

DOI: 10.1016/j.jallcom.2004.06.022

Google Scholar

[19] E.S. Park, H.J. Chang, D.H. Kim, Mg-rich Mg-Ni-Gd ternary bulk metallic glasses with high compressive specific strength and ductility, J. Mater. Res. 22 (2007) 334-338.

DOI: 10.1557/jmr.2007.0034

Google Scholar

[20] J. Yin, G.Y. Yuan, Z.H. Chu, J. Zhang, W.J. Ding, Mg-Ni-(Gd, Nd) bulk metallic glasses with improved glass-forming ability and mechanical properties, J. Mater. Res. 24 (2009) 2130-2140.

DOI: 10.1557/jmr.2009.0255

Google Scholar

[21] H. Peng, S.S. Li, Y.P. Qi, T.Y. Huang, Mg-Ni-Gd-Ag bulk metallic glass with improved glass-forming ability and mechanical properties, Intermetallics. 19 (2011) 829-832.

DOI: 10.1016/j.intermet.2010.11.029

Google Scholar

[22] T. Shibata, A. Inoue, T. Masumoto, Formation, thermal-stability and and mechanical-properties of amrophous alloys in the Mg-transition metal(Ni, Cu)-alkaline-earth metal(Ca, Sr, Ba) system, Journal of Materials Science. 28 (1993) 379-383.

DOI: 10.1007/bf00357812

Google Scholar

[23] H. Ma, L.L. Shi, J. Xu, E. Ma, Chill-cast in situ composites in the pseudo-ternary Mg-(Cu, Ni)-Y glass-forming system: Microstructure and compressive properties, J. Mater. Res. 22 (2007) 314-325.

DOI: 10.1557/jmr.2007.0032

Google Scholar

[24] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[25] F.R. Boer, R. Boom, W.C.M. Matterns, A.R. Miedema, A.K. Niessen, Cohesion in Metals[M]. Elsevier Science: New York, 1988, p.314.

Google Scholar

[26] M.X. Xia, S.G. Zhang, J.G. Li, C.L. Ma, Thermal stability and its prediction of bulk metallic glass systems, Appl. Phys. Lett. 88 (2006) 261913.

DOI: 10.1063/1.2218324

Google Scholar

[27] L. Xia, S.S. Fang, Q. Wang, Y.D. Dong, C.T. Liu, Thermodynamic modeling of glass formation in metallic glasses, Appl. Phys. Lett. 88 (2006) 171905.

DOI: 10.1063/1.2198830

Google Scholar