Effects of SPS Pulse Current on Interface of Al90Mn9Ce1/ZrO2 Micro-Cellular Structure Composites

Article Preview

Abstract:

Metal/ceramic composite materials with micro-cellular structure which is Al90Mn9Ce1 micron powders coated by 10 wt% ZrO2 nanosized powder is prepared by spark plasma sintering. Effects of the SPS pulse current on the sintering behavior and the composite interface structure is investigated via SEM, XRD, TEM and EDS. The experimental results show that the pulse current is the key factor to the formation of micro-cellular structure. When the Al90Mn9Ce1/ZrO2 composites are sintered by a large pulse current, the hot focus on ZrO2 nanopowder among Al90Mn9Ce1 alloy particles as well as Al90Mn9Ce1 alloy particle surface, because of the effect of spark plasma and the concentration of the skin effect in short-term. Dividing temperature field on the interface of micro-cellular structure is benefit for the local high-temperature sintering of the ceramic cell walls layer, and also for the diffusion and interfacial bonding between Al90Mn9Ce1 alloy cell body and the ZrO2 nanosintered cell wall, so as to achieve good sintering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-66

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ishiyama, Plasma activated sintering (PAS) system, in: Y. Bando, K. Kosuge (Ed. ), Proceedings of the 1993 Powder Metall. World Congress, Kyoto, Jpn. Soc. Powder & Powder Metall. Jpn., 1993, pp.931-934.

Google Scholar

[2] M. Frei, U. Anselmi-Tamburini, Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method, J. Appl. Phys. 101 (2007) 114914.

DOI: 10.1063/1.2743885

Google Scholar

[3] K. Itatani, K. Tsuchiya, Y. Sakka et al., Superplastic deformation of hydroxyapatite ceramics with B2O3 or Na2O addition fabricated by pulse current pressure sintering, J. Eur. Ceram. Soc. 31 (2011) 2641-2648.

DOI: 10.1016/j.jeurceramsoc.2011.01.014

Google Scholar

[4] Y.C. Wang, Z.Y. Fu, Study of temperature field in spark plasma sintering, Mater. Sci. Eng. B. 90 (2002) 34-37.

Google Scholar

[5] M. Tokita, Trends in advanced SPS (spark plasma sintering) systems and technology, J. Soc. Powder Technol. Jpn. 30 (1993) 790-804.

Google Scholar

[6] R. Chaim, R. Reshef, G. Liu, Z. Shen, Low-temperature spark plasma sintering of NiO nanoparticles, Mater. Sci. Eng. A 528 (2011) 2936-2940.

DOI: 10.1016/j.msea.2010.11.050

Google Scholar

[7] Y. Watanabe, Y. Iwasa, H. Sato, A. Teramoto, et al., Microstructures and mechanical properties of titanium/biodegradable-polymer FGM for bone tissue fabricated by spark plasma sintering method, J. Mater. Process. Technol. 211 (2011) 1919-(1926).

DOI: 10.1016/j.jmatprotec.2011.05.024

Google Scholar

[8] R.K. Chintapallia, E. Jimenez-Piquea, et al., Spherical instrumented indentation of porous nanocrystalline zirconia, J. Eur. Ceram. Soc. 32 (2012) 123-132.

Google Scholar

[9] G.Q. Xie, H. Kimura, D.V. Louzguine-Luzgin, et al., SiC dispersed Fe-based glassy composite cores produce d by spark plasma sintering and their high frequency magnetic properties, Intermetallics. 20 (2012) 76-81.

DOI: 10.1016/j.intermet.2011.08.023

Google Scholar

[10] S.X. Wang, S.L. Li, M.G. Wang, et al., Construction of 3D micro-cellular structure of the metal /ceramic system, Rare metals. 30 (2011) 604.

DOI: 10.1007/s12598-011-0355-z

Google Scholar

[11] Z.K. Zhao, K.F. Yao, J.F. Li, A bulk metal/ceramic composite material with a cellar structure, Chin. Sci. Bull. 51 (2006) 235-239.

DOI: 10.1007/s11434-004-0491-9

Google Scholar

[12] M. Tokita, Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering, Mater. Sci. Forum. 308-311 (1999) 83-88.

DOI: 10.4028/www.scientific.net/msf.308-311.83

Google Scholar

[13] T. Nagae, M. Yokota, M. Nose, et al., Effects of pluse current on an aluminum power oxide layer during pulse current pressure Sintering, Mater. Trans. 43 (2002) 1390-1397.

DOI: 10.2320/matertrans.43.1390

Google Scholar

[14] M. Belmonte, M.I. Osendi, P. Miranzo, Modeling the effect of pulsing on the spark plasma sintering of silicon nitride materials, Scripta Mater. 65 (2011) 273-276.

DOI: 10.1016/j.scriptamat.2011.04.029

Google Scholar

[15] S.W. Wang, L.D. Chen, Y.S. Kang, M. Niino, et al., Effect of plasma activated sintering (PAS) parameters ondensification of copper powder, Mater. Res. Bull. 35 (2000) 619-628.

DOI: 10.1016/s0025-5408(00)00246-4

Google Scholar

[16] Z.K. Zhao, J.C. Li, Q. Jiang, Effect of sintering temperatures on the room temperature properties of Al90Mn8Ce2 alloys, J. Mater. Eng. Perform. 11 (2002) 262-264.

Google Scholar

[17] N.A. Lange, J.A. Dean, Lange's Handbook of Chemistry, thirteenth ed., Mc Graw-Hill, New York, (1985).

Google Scholar

[18] R. Pazhani, H. Padma Kumar, A. Varghese, et al., Synthesis, vacuum sintering and dielectric characterization of zirconia (t-ZrO2) nanopowder, J. Alloys Compd. 509 (2011) 6819–6823.

DOI: 10.1016/j.jallcom.2011.03.089

Google Scholar

[19] D. Zhang, M.G. Wang and Z.K. Zhao, The performance and spark plasma assembling of ZrO2/Al90Mn9Ce1 core-shell structural micro-nano composite powders, Mater. Sci. Tech. 19 (2011) 209-213.

Google Scholar

[20] R. Benato, A. Paolucci, Multiconductor cell analysis of skin effect in Milliken type cables, Electr. Pow. Systems Research. 90 (2012) 99–106.

DOI: 10.1016/j.epsr.2012.04.006

Google Scholar

[21] K.A. Khor, L.G. Yu, O. Andersen, et al., Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall, Mater. Sci. Eng. B. 356 (2003) 130-135.

DOI: 10.1016/s0921-5093(03)00111-4

Google Scholar