Effect of Process Parameters on Hydroforming of Stainless Steel Tubular Components with Rectangular Section

Article Preview

Abstract:

The effects of key process parameters including initial lengths of tube blank, forming velocity and loading paths on hydroformability of stainless steel tubular components with rectangular section were systematically investigated. The results showed that sufficient axial feed must be given before the tube contacting the surface of die in order to prevent the excessive thickness thinning, especially for longer tube blank. The lower loading velocity led to enhanced formability. It is more important that pulsating loading path observably improved the formability of 304 stainless steel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-74

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Dohmann, C. Hartl, Hydroforming - a method to manufacture light-weight parts, J. Mater. Process. Technol. 60 (1996) 669-676.

DOI: 10.1016/0924-0136(96)02403-x

Google Scholar

[2] M. Ahmetoglu, T. Altan, Tube hydroforming: state-of-the-art and future trends, J. Mater. Process. Technol. 98 (2000) 25-33.

DOI: 10.1016/s0924-0136(99)00302-7

Google Scholar

[3] S.J. Yuan, C. Han, X.S. Wang, Hydroforming of automotive structural components with rectangular-sections, Int. J. Mach. Tool. Manu. 46 (2006) 1201-1206.

DOI: 10.1016/j.ijmachtools.2006.01.038

Google Scholar

[4] S.H. Zhang, Developments in hydroforming, J. Mater. Process. Technol. 91 (1999) 236-244.

Google Scholar

[5] T. Hama, T. Ohkubo, K. Kurisu, H. Fujimoto, H. Takuda, Formability of tube hydroforming under various loading paths, J. Mater. Process. Technol. 177 (2006) 676-679.

DOI: 10.1016/j.jmatprotec.2006.03.213

Google Scholar

[6] M. Imaninejad, G. Subhash, A. Loukus, Loading path optimization of tube hydroforming process, Int. J. Mach. Tool. Manu. 45 (2005) 1504-1514.

DOI: 10.1016/j.ijmachtools.2005.01.029

Google Scholar

[7] M. Loh-Mousavi, K. Mori, K. Hayashi, M. Bakhshi Jooybari, Improvement of filling of die corners in box-shaped tube hydroforming by control of wrinkling, Key Eng. Mater. 344 (2007) 461-467.

Google Scholar

[8] K. Mori, T. Maeno, S. Maki, Mechanism of improvement of formability in pulsating hydroforming of tubes, Int. J. Mach. Tool. Manu. 47 (2007) 978-984.

DOI: 10.1016/j.ijmachtools.2006.07.006

Google Scholar

[9] M. Loh-Mousavi, K. Mori, K. Hayashi, S. Maki, M. Bakhshi Jooybari, 3-D finite element simulation of pulsating T-shape hydroforming of tubes, Key Eng. Mater. 340-341 (2007) 353-358.

DOI: 10.4028/www.scientific.net/kem.340-341.353

Google Scholar

[10] H.N. Han, C.G. Lee, D. -W. Suh, S. -J. Kim, A microstructure-based analysis for transformation induced plasticity and mechanically induced martensitic transformation, Mater. Sci. Eng. A. A 485 (2008) 224-233.

DOI: 10.1016/j.msea.2007.08.022

Google Scholar

[11] F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, A new view on transformation induced plasticity (TRIP), Int. J. Plasticity. 16 (2000) 723-748.

DOI: 10.1016/s0749-6419(99)00078-9

Google Scholar

[12] M.R.D. Rocha, C.A.S.D. Oliveira, Evaluation of the martensitic transformations in austenitic stainless steels, Mater. Sci. Eng. A. A 517 (2009) 281-285.

DOI: 10.1016/j.msea.2009.04.004

Google Scholar

[13] A.M. Beese, D. Mohr, Identification of the direction-dependency of the martensitic transformation in stainless steel using in situ magnetic permeability measurements, Exp Mech. 51 (2011) 667-676.

DOI: 10.1007/s11340-010-9374-y

Google Scholar

[14] D. Raabe, Texture and microstructure evolution during cold rolling of a strip cast and of a hot rolled austenitic stainless steel, Acta Mater. 45 (1997) 1137-1115.

DOI: 10.1016/s1359-6454(96)00222-4

Google Scholar

[15] S. Gallée, P. Pilvin, Deep drawing simulation of a metastable austenitic stainless steel using a two-phase model, J. Mater. Process. Technol. 210 (2010) 835-843.

DOI: 10.1016/j.jmatprotec.2010.01.008

Google Scholar

[16] Y. Xu, S.H. Zhang, H.W. Song, M. Cheng, H.Q. Zhang, The enhancement of transformation induced plasticity effect on austenitic stainless steels by cyclic tensile loading and unloading, Mater. Lett. 65 (2011) 1545-1547.

DOI: 10.1016/j.matlet.2011.02.066

Google Scholar

[17] Y. Xu, S.H. Zhang, H.W. Song, M. Cheng, In situ X-ray diffraction study of martensitic transformation in austenitic stainless steel during cyclic tensile loading and unloading, Scripta Mater. 67 (2012) 771–774.

DOI: 10.1016/j.scriptamat.2012.07.021

Google Scholar

[18] M. Koc, Investigation of the effect of loading path and variation in material properties on robustness of the tube hydroforming process, J. Mater. Process. Technol. 133 (2003) 276-281.

DOI: 10.1016/s0924-0136(02)00849-x

Google Scholar

[19] W.S. Park, S.W. Yoo, M.H. Kim, J.M. Lee, Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments, Mater Design. 31 (2010) 3630-3640.

DOI: 10.1016/j.matdes.2010.02.041

Google Scholar