[1]
F.S. Pan, D.F. Zhang, Aluminium alloy and application, Chemical Industry Press, Beijing, 2006, pp.300-306.
Google Scholar
[2]
S.J. Luo, B.G. Chen, P.X. Qi, Liquid die forging and squeeze casting technology, Chemical Industry Press, Beijing, 2007, pp.1-4.
Google Scholar
[3]
M. R Ghomashchi, A Vikhrov, Squeeze casting: an overview, Journal of Materials Processing Technology. 101 (2000) 1-9.
DOI: 10.1016/s0924-0136(99)00291-5
Google Scholar
[4]
A. Maleki, B. Niroumand, A. Shafyei, Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy, Materials Science and Engineering A. 428 (2006) 135-140.
DOI: 10.1016/j.msea.2006.04.099
Google Scholar
[5]
M. Gallerneault, G. Durrant, B. Cantor, The squeeze casting of hypoeutectic binary Al-Cu, Metallurgical and Materials Transactions A. 27 (1996) 4121-4132.
DOI: 10.1007/bf02595660
Google Scholar
[6]
E. Hajjari, M. Divandari, An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy, Materials and Design. 29 (2008) 1685-1689.
DOI: 10.1016/j.matdes.2008.04.012
Google Scholar
[7]
T.M. Yue, Squeeze casting of high-strength aluminum wrought alloy AA7010, Journal of Materials Processing Technology. 66 (1997) 179-185.
DOI: 10.1016/s0924-0136(96)02516-2
Google Scholar
[8]
M.S. Yong, A.J. Clegg, Process optimisation for a squeeze cast magnesium alloy, Journal of Materials Processing Technology. 145 (2004) 134-141.
DOI: 10.1016/j.jmatprotec.2003.07.006
Google Scholar
[9]
Y. Zhong, D.S. Yan, G.Y. Su, K. Yang, Microsegregation and improving method of a squeeze cast LY12 alloy, Acta Metallurgica Sinica. 37 (2001) 42-46.
Google Scholar
[10]
M. Song, Y.H. He, D.H. Xiao, B.Y. Huang, Effect of thermomechanical treatment on the mechanical properties of an Al–Cu–Mg alloy, Materials and Design. 30 (2009) 857-861.
DOI: 10.1016/j.matdes.2008.05.053
Google Scholar
[11]
S.K. Son, M. Takeda, M. Mitome, Y. Bando, T. Endo, Precipitation behavior of an Al-Cu alloy during isothermal aging at low temperatures, Materials Letters. 59 (2005) 629-632.
DOI: 10.1016/j.matlet.2004.10.058
Google Scholar
[12]
B. Klobes, K. Maier, T.E.M. Staab, Natural ageing of Al–Cu–Mg revisited from a local perspective, Materials Science and Engineering A. 528 (2011) 3253-3260.
DOI: 10.1016/j.msea.2011.01.002
Google Scholar
[13]
L.B. Wang, B.Y. Yu, Y. Wang, H.P. Yu, Influence of heat treatment on structure and properties of Al-Cu alloy, Hot Working Technology. 35 (2006) 25-26.
Google Scholar
[14]
T.S. Parel, S.C. Wang, M. J. Starink, Hardening of an Al–Cu–Mg alloy containing Types I and II S phase precipitates, Materials and Design. 31 (2010) s2-s5.
DOI: 10.1016/j.matdes.2009.12.048
Google Scholar
[15]
M.Z. Zhou, D.Q. Yi, D.Y. Yin T.R. Hong, D.Y. Huang, Effect of electric field on kinetics of formation of S phase in 2E12 aluminum alloy, The Chinese journal of Nonferrous Metals. 20 (2010) 1290-1295.
Google Scholar
[16]
W. Li, J.P. Long, B.L. Shen, S.J. Gao, M.J. Tu, DSC Study on the Age-precipitation Behavior of Al-4. 5Cu Alloy and Mullite-fiber Reinforced Al-4. 5Cu Composite, Journal of Instrumental Analysis. 21 (2002) 8-10.
Google Scholar
[17]
F. Wang, Q.F. Li, H.W. Duan, B.Y. Yu, H.P. Yu, Effects of heat treatment on structure and properties of direct squeeze casting Al-5Cu alloy, Special Casting and Nonferrous Alloys. 26 (2006) 649-652.
Google Scholar
[18]
X.T. Liu, J.Z. Cui, Study on the diffusion kinetics of aluminum alloy cast during homogenizing penetration, Materials Review. 18 (2004) 102-104.
Google Scholar
[19]
Y. Zhong, G.Y. Su, K. Yang, Microsegregation and improved methods of squeeze casting 2024 aluminium alloy, Journal of Materials Science and Technology. 19 (2003) 413-216.
Google Scholar
[20]
S.W. Kim, D.Y. Kim, W.G. Kim, K.D. Woo, The study on characteristics of heat treatment of the direct squeeze cast 7075 wrought Al alloy, Materials Science and Engineering A. 304-306 (2001) 721-726.
DOI: 10.1016/s0921-5093(00)01594-x
Google Scholar