[1]
N. Fujita, K. Ohmura, A. Yamamoto, Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels, Mater. Sci. Eng., A 351 (2003) 272-281.
DOI: 10.1016/s0921-5093(02)00831-6
Google Scholar
[2]
N. Fujita, M. Kikuchi, K. Ohmura, et al., Effect of Nb on high-temperature properties for ferritic stainless steel, Scripta Mater. 35 (1996) 705-710.
DOI: 10.1016/1359-6462(96)00214-x
Google Scholar
[3]
N.R. Baddoo, Stainless steel in construction: A review of research, applications, challenges and opportunities, J. Constr. Steel Res. 64 (2008) 1199-1206.
DOI: 10.1016/j.jcsr.2008.07.011
Google Scholar
[4]
J.K. Kim, Y.H. Kim, S.H. Uhm, et al., Intergranular corrosion of Ti-stabilized 11 wt% Cr ferritic stainless steel for automotive exhaust systems, Corros. Sci. 51 (2009) 2716-2723.
DOI: 10.1016/j.corsci.2009.07.008
Google Scholar
[5]
H. Yan, H. Bi, X. Li, et al., Microstructure and texture of Nb+Ti stabilized ferritic stainless steel, Mater. Charact. 59 (2008) 1741-1746.
DOI: 10.1016/j.matchar.2008.03.018
Google Scholar
[6]
R.P. Siqueira, H.R.Z. Sandim, T.R. Oliveira, et al., Composition and orientation effects on the final recrystallization texture of coarse-grained Nb-containing AISI 430 ferritic stainless steels, Mater. Sci. Eng., A 528 (2011) 3513-3519.
DOI: 10.1016/j.msea.2011.01.007
Google Scholar
[7]
S. Hastuty, A. Nishikata, T. Tsuru, Pitting corrosion of type 430 stainless steel under chloride solution droplet, Corros. Sci. 52 (2010) 2035-(2043).
DOI: 10.1016/j.corsci.2010.02.031
Google Scholar
[8]
C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad 26 (2002) 189-228.
DOI: 10.1016/s0364-5916(02)00035-4
Google Scholar
[9]
C.W. Bale, E. Bélisle, P. Chartrand, et al., FactSage thermochemical software and databases-recent developments, Calphad 33 (2009) 295-311.
DOI: 10.1016/j.calphad.2008.09.009
Google Scholar
[10]
H. Wang, L. Sun, B. Peng, et al., Study on inclusions for ultra-pure ferritic stainless steels containing 21% chromium, J. Iron Steel Res., Int. (in press).
DOI: 10.1016/s1006-706x(13)60179-x
Google Scholar
[11]
K.A. Taylor, Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite, Scri. Metall. Mater. 32 (1995) 7-12.
Google Scholar
[12]
S. Matsuda, N. Okumura, Effect of distribution of Ti nitride precipitate particles on the austenite grain size of low carbon and low alloy steels, Trans. J. Iron Steel Inst. Jpn 18 (1978) 198-205.
DOI: 10.2355/isijinternational1966.18.198
Google Scholar
[13]
K. Narita, Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel, Trans. J. Iron Steel Inst. Jpn 15 (1975).
DOI: 10.2355/isijinternational1966.15.145
Google Scholar
[15]
T. Maki, Principle and various methods for grain refinement of steels, Heat Treat. 21 (2006) 1-9+14 (in Chinese).
Google Scholar
[16]
G.M. Sim, J.C. Ahn, S.C. Hong, et al., Effect of Nb precipitate coarsening on the high temperature strength in Nb containing ferritic stainless steels, Mater. Sci. Eng., A 396 (2005) 159-165.
DOI: 10.1016/j.msea.2005.01.030
Google Scholar