Critical Current Characteristics and Flux Pinning in Fe-Based Pnictide Superconductor

Article Preview

Abstract:

The superconducting Ba1-xKxFe2As2 (x = 0.4) single crystals were prepared by the so-called FeAs self-flux method. The critical temperature by ac susceptibility measurement was estimated to be about 36 K. The magnetic field and temperature dependences of critical current densities were investigated by an ac inductive measurement (Campbell’s method). Unlike the phenomenon of co-existence of the global and local critical current densities observed in many polycrystalline Fe-based superconducting pnictides, it was found that only a uniform critical current density (Jc) flows through the whole sample. The value of Jc at 20 K and 1 T was about 5×108 A/m2, which is much smaller than the local critical current density observed in polycrystalline samples. This result implies that a dissimilarity of flux pinning mechanism exists between these two kinds of materials. The force-displacement characteristic of fluxoids in sample was investigated. The Labusch parameter was found to increase monotonously with increasing magnetic field, while the interaction distance was proportional to the fluxoid spacing. These results are consistent with the prediction based on a simple flux pinning mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

288-292

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x= 0. 05-0. 12) with Tc=26K. J. Am. Chem. Soc. 2008; 130: 3296-3297.

DOI: 10.1021/ja800073m.s002

Google Scholar

[2] E. S. Otabe, M. Kiuchi, S. Kawai, Y. Morita, J. Ge, B. Ni, Z. S. Gao, L. Wang, Y. P. Qi, X. P. Zhang, Y. W. Ma. Global and local critical current density in superconducting SmFeAsO1-xFx measured by two methods. Physica C 2009; 469: p.1940–(1944).

DOI: 10.1016/j.physc.2009.06.013

Google Scholar

[3] Y. P. Qi, X. P. Zhang, Z. S. Gao, Z. Y. Zhang, L. Wang, D. L. Wang, Y. W. Ma. Superconductivity of powder-in-tube Sr0. 6K0. 4Fe2As2 wires. Physica C 2009; 469: 717-720.

DOI: 10.1016/j.physc.2009.03.008

Google Scholar

[4] K. Togano, A. Matsumoto, H. Kumakura. Large Transport Critical Current Densities of Ag Sheathed (Ba, K)Fe2As2+Ag Superconducting Wires Fabricated by an Ex-situ Powder-in-Tube Process. Applied Physics Express 2011; 4: 043101.

DOI: 10.1143/apex.4.043101

Google Scholar

[5] C. L. Wang, Z. S. Gao, C. Yao. L. Wang, Y. P. Qi, D. L. Wang, X. P. Zhang, Y. W. Ma. One-step method to grow Ba0. 6K0. 4Fe2As2 single crystals without fluxing agent. Superconductor Science and Technology 2011; 24: 065002.

DOI: 10.1088/0953-2048/24/6/065002

Google Scholar

[6] A. M. Campbell. The response of pinned flux vortices to low-frequency fields. J Phys C 1969; 2: 1492–1501.

DOI: 10.1088/0022-3719/2/8/318

Google Scholar

[7] A. M. Campbell. The interaction distance between flux lines an pinning centres. J Phys C 1971; 4: 3186–3198.

DOI: 10.1088/0022-3719/4/18/023

Google Scholar

[8] R. Prozorov, N. Ni, M. A. Tanatar, V. G. Kogan, R. T. Gordon, C. Martin, E. C. Blomberg, P. Prommapan, J. Q. Yan, S. L. Bud'ko, P. C. Canfield. Vortex phase diagram of Ba(Fe0. 93Co0. 07)2As2 single crystals. Phys. Rev. B 2008; 78: 224506.

DOI: 10.1016/j.physc.2009.03.028

Google Scholar

[9] A. K. Pramanik, L. Harnagea, C. Nacke, A. U. B. Wolter, S. Wurmehl, V. Kataev, B. Buchner. Fishtail effect and vortex dynamics in LiFeAs Single crystals. Phys. Rev. B 2011; 83: 094502.

DOI: 10.1103/physrevb.83.094502

Google Scholar

[10] A. M. Campbell, H. Küpfer, R. Meier-Hirmer. Tests of pinning theories using the response to small oscillations. In: T. Matsushita, K. Yamafuji, F. Irie, editors. Proceedings of International Symposium on Flux Pinning and Electromagnetic Properties in Superconductors, Fukuoka: Matsukuma; 1985, p.54.

Google Scholar

[11] D. L. Sun, Y. Liu, C. T. Lin. Comparative study of upper critical field Hc2 and second magnetization peak Hsp in hole- and electron-doped BaFe2As2 superconductor. Phys. Rev. B 2009; 80: 144515.

Google Scholar

[12] R. Kopeliansky, A. Shaulov, B. Y. Shapiro, Y. Yeshurun, B. Rosenstein, J. J. Tu, L. J. Li, G. H. Cao, Z. A. Xu. Possibility of vortex lattice structural phase transition in the superconducting pnictide Ba(Fe0. 925Co0. 075)2As2. Phys. Rev. B 2010; 81: 092504.

DOI: 10.1103/physrevb.81.092504

Google Scholar

[13] T. Matsushita, H. Küpfer. Enhancement of the superconducting critical current from saturation in Nb-Ti wire. J. Appl. Phys. 1988; 63: 5028–5029.

DOI: 10.1063/1.340402

Google Scholar

[14] T. Matsushita. Pinning Force of a Nonideal Superconductor Containing Pins with Large Interaction Forces. II. Low Pin Density. Jpn. Appl. Phys. 1981; 20: 1955–(1966).

DOI: 10.1143/jjap.20.1955

Google Scholar