Three-Dimensional Characterization of BaZrO3 Precipitates in Y1-xGdxBa2Cu3O7-y Prepared by TFA-MOD Using STEM-Tomography

Article Preview

Abstract:

Y1-xGdxBa2Cu3O7-y film with BaZrO3 was fabricated on CeO2 buffered LaMnO3/ion beam assisted deposition MgO/Gd2Zr2O7/Hastelloy C276TM substrates by the trifluoroacetates metal organic deposition process, whose microstructural and elemental analyses were performed by transmission electron microscopy. Y1-xGdxBa2Cu3O7-y film with the thickness about 700 nm was found composed of c-axis oriented grains and large numbers of randomly oriented precipitates, such as (Y,Gd)2Cu2O5, CuO and BaZrO3. (Y,Gd)2Cu2O5 and CuO precipitates were heterogeneously dispersed in the Y1-xGdxBa2Cu3O7-y matrix with their sizes ranging between 100 and 200 nm, and BaZrO3 precipitates were uniformly dispersed with their sizes ranging between 10 and 20 nm. Electron tomography with elemental information was performed further to reveal the three-dimensional information of BaZrO3 precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-51

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, et al, Phys. Rev. Lett. 58, (1987), 908

Google Scholar

[2] T. Izumi, Y. Shiohara, Physica C 470, (2010), 967

Google Scholar

[3] B. Oswald, M. Krone, M. Söll, T. Straßer, J. Oswald, K.-J. Best, et al, IEEE Trans. Appl. Supercond 9, (1999), 1201

Google Scholar

[4] Y. Shiohara, N. Fujiwara, H. Hayashi, S. Nagaya, T. Izumi, M. Yoshizumi, Physica C 469, (2009), 863

Google Scholar

[5] S. Mukoyama, M. Yagi, T. Masuda, N. Amemiya, A. Ishiyama, N. Kashima, et al, Physica C 469, (2009), 1688

Google Scholar

[6] U. Schoop, M.W. Rupich, C. Thieme, D.T. Verebelyi, W. Zhang, X. Li, et al, IEEE Trans. Appl. Supercond 15, (2005), 2611

Google Scholar

[7] Y. Shiohara, M. Yoshizumi, T. Izumi, Y. Yamada, Physica C 468, (2008), 1498

Google Scholar

[8] M. Miura, T. Kato, M. Yoshizumi, Y. Yamada, T. Izumi, T. Hirayama, et al, Appl. Phys. Express 2, (2009), 023002

Google Scholar

[9] L. Stan, T.G. Holesinger, B. Maiorov, Y. Chen, D.M. Feldmann, I. O. Usov et al, Supercond. Sci. Technol. 21, (2008), 105023

Google Scholar

[10] Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, et al, Appl. Phys. Lett. 87, (2005), 132502

Google Scholar

[11] Y. Takahashi, T. Araki, K. Yamagiwa, Y, Yamada, S.B. Kim, Y. Iijima, et al, Physica C 357-360, (2001), 1003

Google Scholar

[12] M. Miura, M. Yoshizumi, T. Izumi, Y Shiohara, Supercond. Sci. Technol. 23, (2010), 014013

Google Scholar

[13] L. Civale, Supercond. Sci. Technol 10, (1997), A11

Google Scholar

[14] K. Kaneko, K. Furuya, K. Yamada, S. Sadayama, J. S. Barnard, P. A. Midgley, et al, J. Appl. Phys. 108, (2010), 063901

Google Scholar

[15] S. Horii, M. Takamura, M. Mukaida, A. Ichinose, K. Yamada, R. Teranishi, et al, Appl. Phys. Lett. 92, (2008), 132502

Google Scholar

[16] P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, et al, Supercond. Sci. Technol. 20, (2007), 616

Google Scholar

[17] C.V. Varanasi, P.N. Barnes, J. Burke, L. Brunke, I. Maartense, T.J. Haugan, et al, Supercond. Sci. Technol. 19, (2006), 37

Google Scholar