Predictor Equations for Estimating Crater Dimensions in PMEDM Process Using Fem Simulation and Experimental Validation

Article Preview

Abstract:

In the present study, the powder mixed EDM (PMEDM) process was simulated using FE approach to obtain simulated temperature profiles for estimating the crater dimensions and volume removed during formation of each crater. The craters formed in PMEDM process had higher diameter and shallow depth resulting in improved MRR and better surface finish. The addition of powder increased the amount of heat available at the workpiece between 20-25% as compared to conventional EDM process. The results were subsequently validated experimentally to compare the actual measurements with the simulation output. Predictor equations for crater radius and depth incorporating the significant factors were developed and also validated with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-60

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kansal, H.K., Singh, S., and Kumar, P. Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. J. Mfg Process, 2007, 9, 13–21.

DOI: 10.1016/s1526-6125(07)70104-4

Google Scholar

[2] Jeswani, M.L. Effect of the addition of graphite powder to kerosene used as a dielectric fluid in electrical discharge machining. Wear, 1981, 70, 133–139.

DOI: 10.1016/0043-1648(81)90148-4

Google Scholar

[3] Wu, K.L.; Yan, B.H.; Huang, F.Y.; Chen, S.C. Improvement of surface finish on SKD steel using electro-discharge machining with aluminium and surfactant added dielectric. Int. J. Mach Tools Mfg, 2005, 45, 1195–1201.

DOI: 10.1016/j.ijmachtools.2004.12.005

Google Scholar

[4] Pecas, P., and Henriques, E. Electrical discharge machining using simple and powder-mixed dielectric: The effect of the electrode area in the surface roughness and topography. J. Mater. Process Technol., 2008, 200, 250–258.

DOI: 10.1016/j.jmatprotec.2007.09.051

Google Scholar

[5] Kumar, S., Singh, R., Singh, T.P., and Sethi, B.L. Comparison of material transfer in electrical discharge machining of AISI H13 die steel. Proc. IMechE, Part C: J Mech Engng Sci, 2009, 223(7), 1733-1740.

DOI: 10.1243/09544062jmes1227

Google Scholar

[6] Lin, Y.C., Chen, Y.F.,  Lin, C.T., and Tzeng, H.J. Electrical Discharge Machining (EDM) Characteristics Associated with Electrical Discharge Energy on Machining of Cemented Tungsten Carbide. Mater. Mfg Process, 2008, 23(4), 391–399.

DOI: 10.1080/10426910801938577

Google Scholar

[7] Guu, Y.H.,  Chou, C.Y., and Chiou, S.T. Study of the Effect of Machining Parameters on the Machining Characteristics in Electrical Discharge Machining of Fe-Mn-Al Alloy. Mater. Mfg Process, 2005, 20(6), 905–916.

DOI: 10.1081/amp-200060412

Google Scholar

[8] Zhao, W.S., Meng, Q.G. and Wang Z.L. The application of research on powder mixed EDM in rough machining. J. Mater. Process Technol., 2002, 129, 30-33.

Google Scholar

[9] Bhattacharya, A. Batish, A., and Singh, G. Optimal parameter settings for rough and finish machining of die steels in powder mixed EDM. Int. J. Adv. Mfg Technol., submitted article (IJAMT7370R2).

DOI: 10.1007/s00170-011-3716-5

Google Scholar

[10] Batish, A., Bhattacharya, A., Singla, V.K. and Singh, G. Study of Material Transfer Mechanism in Die Steels using Powder Mixed EDM. Mater. Mfg Process, 2011, available online, DOI: 10. 1080/10426914. 2011. 585498.

Google Scholar

[11] Kansal, H.K., Singh, S., and Kumar, P. Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J. Mater. Process Technol., 2005, 169, 427–436.

DOI: 10.1016/j.jmatprotec.2005.03.028

Google Scholar

[12] Lin, Y.C., Cheng, C.H., Su, B.L., and Hwang, L.R. Machining Characteristics and Optimization of Machining Parameters of SKH 57 High-Speed Steel Using Electrical-Discharge Machining Based on Taguchi Method. Mater. & Manuf Process, 2006, 21(8), 922–929.

DOI: 10.1080/03602550600728133

Google Scholar

[13] Bhattacharya, A., Batish, A., and Singh, G. Optimization of Powder Mixed Electric Discharge Machining using Dummy Treated Experimental Design with Analytic Hierarchy Process. Proc. IMechE, Part B: J. Engng Manuf, 2011, accepted manuscript.

DOI: 10.1177/0954405411402876

Google Scholar

[14] Kumar, A., Maheshwari, S., Sharma, C., and Beri, N. A Study of Multiobjective Parametric optimization of Silicon Abrasive Mixed Electrical Discharge Machining of Tool Steel. Mater. Mfg Process, 2010, 25(10), 1041–1047.

DOI: 10.1080/10426910903447303

Google Scholar

[15] Joshi, S.N. and Pande, S.S. Thermo-physical modeling of die-sinking EDM process. J. Mfg Process, 2010, 12, 45–56.

DOI: 10.1016/j.jmapro.2010.02.001

Google Scholar

[16] Panda, D.K. and Bhoi, R.K. Analysis of spark eroded crater formed under growing plasma channel in electro-discharge machining. Machining Sc. Technol., 2005, 9(2), 239–261.

DOI: 10.1081/mst-200059063

Google Scholar

[17] Yadav, V., Jain, V.K. and Dixit, P.M. Thermal stresses due to electrical discharge machining. Int. J. Mach Tools Mfg, 2002, 42, 877–888.

DOI: 10.1016/s0890-6955(02)00029-9

Google Scholar

[18] Das, S., Klotz, M. and Klocke, F. EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. J. Mater. Process Technol., 2003, 142, 434–451.

DOI: 10.1016/s0924-0136(03)00624-1

Google Scholar

[19] Sanchez, J.A., Izquierdo, B., Ortega, N., Pombo, I., Plaza, S. and Cabanes, I. Computer simulation of performance of electrical discharge machining operations. Int. J. Compu. Intgrd. Mfg, 2009, 22( 8), 799–811.

DOI: 10.1080/09511920902741125

Google Scholar

[20] Salah, N.B., Ghanem, F. and Atig, K.B. Numerical study of thermal aspects of electric discharge machining process. Int. J. Mach Tools Mfg, 2006, 46, 908–911.

DOI: 10.1016/j.ijmachtools.2005.04.022

Google Scholar

[21] Marafona, J. and Chousal, J.A.G. A finite element model of EDM based on the Joule effect, Int. J. Mach Tools Mfg, 2006, 46, 595–602.

DOI: 10.1016/j.ijmachtools.2005.07.017

Google Scholar

[22] Schulze, H.P., Herms, R., Juhr, H., Schaetzing and Wollenberg, W.G. Comparison of measured and simulated crater morphology for EDM. J. Mater. Process Technol., 2004, 149, 316–322.

DOI: 10.1016/j.jmatprotec.2004.02.016

Google Scholar

[23] Kansal, H.K., Singh, S. and Kumar, P. Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math. Compu. Modelling, 2008, 47, 1217–1237.

DOI: 10.1016/j.mcm.2007.05.016

Google Scholar

[24] DiBitonto, D.D., Eubank, P.T., Patel, M.R. and Barrufet, M.A. Theoretical models of the electrical discharge machining process–I: A simple cathode erosion model. J. Appld. Phys., 1989, 66(9), 4095–4103.

DOI: 10.1063/1.343994

Google Scholar

[25] Patel, M.R., Barrufet, A., Eubank, P.T. and DiBitonto, D.D. Theoretical models of the electrical discharge machining process–II: The anode erosion model, J. Appld. Phys., 1989, 66(9), 4104–4111.

DOI: 10.1063/1.343995

Google Scholar

[26] Snoyes, R., and Van Dijck, F. Investigations of EDM operations by means of thermo mathematical models. Annl CIRP, 1971, 20(1), 35-36.

Google Scholar

[27] Snoyes, R., and Van Dijck, F. Plasma channel diameter growth affects stock removal. Annl CIRP, 1972, 21(1), 39–40.

Google Scholar

[28] Ghosh, A. and Mallik, A.K. Manufacturing Science, (Affiliated East-West Press Private Limited, New Delhi, 1985).

Google Scholar

[29] Erden, A. Effect of materials on the mechanism of electric discharge machining (EDM). Trans. ASME – J. Engng Mater Technol., 1983, 108, 247–251.

Google Scholar

[30] Shankar, P., Jain, V.K. and Sundarajan, T. Analysis of spark profiles during EDM process. Machng Sc. Technol., 1997, 1(2), 195–217.

Google Scholar

[31] Marty, C.C. Investigations of surface temperature in electro discharge machining. Trans. ASME-J. Engng for Industry, 1977, 682–684.

Google Scholar

[32] Erden, A. and Kaftanoglu, B. Heat transfer modeling of electric discharge machining. Proc. of 21st MTDR Conference, Swansea, 1980, 351–358.

Google Scholar

[33] Jilani, S.T. and Pandey, P.C. Analysis and modeling of EDM parameters. Precsn. Engng, 1982, 4(4), 215–221.

Google Scholar

[34] Eubank, P.E., Patel, M.R., Barrufet, M.A. and Bozkurt, B. Theoretical models of the electrical discharge machining process – III: The variable mass, cylindrical plasma model. J Appd Phys., 1993, 73(11), 7900–7909.

DOI: 10.1063/1.353942

Google Scholar

[35] Bhattacharya, R., Jain, V.K. and Ghoshdastidar, P.S. Numerical simulation of thermal erosion in EDM process. IE (I) Journal-PR, 1996, 77, 13–19.

Google Scholar

[36] Madhu, P., Jain, V.K., Sundararajan, T. and Rajurkar, K.P. Finite element analysis of EDM process. Procsng of Adv. Mater., 1991, 1, 161–173.

Google Scholar

[37] Singh, Gurpreet. Experimentation for improvement in surface properties and process optimization of die steels by using powder mixed dielectric in EDM process. (ME Thesis, Thapar University, Patiala, 2010).

Google Scholar

[38] Singh, Gurmail. Investigations on improvement of material properties and parametric optimization of MRR, TWR and roughness using powder mixed dielectric in EDM process. (ME Thesis, Thapar University, Patiala, 2010).

Google Scholar

[39] Pandey, P.C. and Jilani, S.T. Plasma channel growth and the resolidified layer in EDM. Precision. Engng, 1986, 8(2), 104–110.

DOI: 10.1016/0141-6359(86)90093-0

Google Scholar