[1]
T.H. Kosel, Friction, Lubrication and Wear Technology, ASM Handbook, 18 (1992) 199.
Google Scholar
[2]
Y. Zhang, Y.B. Cheng, S. Lathabai, Erosion of aluminium Ceramics by Air- and Water- Suspended Gernet Particles, Wear, 240 (2000) 40.
DOI: 10.1016/s0043-1648(00)00335-5
Google Scholar
[3]
R J K Wood, and D. Wheeler, Design and performance of a High Velosity Air-Sand Jet Impingement Erosion Facility, Wear, 220, (1998) 95.
DOI: 10.1016/s0043-1648(98)00196-3
Google Scholar
[4]
J. Vicenzi, D.L. Villanova, M.D. Lima, A.S. Takimi, C.M. Marques, C.P. Bergmann: Mater. Design, 27 (2006) 236.
Google Scholar
[5]
H Liao, B. Normand, C. Coddet, Influence of Coating Microstructure on the Abrasive Wear Resistance of WC/Co Cermet Coatings, Surf. Coat. Technol, 124 (2000) 235.
DOI: 10.1016/s0257-8972(99)00653-2
Google Scholar
[6]
Q. Yang, T. Senda, A. Ohmori, Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC–12% Co coatings, Wear, 254 (2003) 23.
DOI: 10.1016/s0043-1648(02)00294-6
Google Scholar
[7]
B.Q. Wang, A. Verstak, Elevated temperature erosion of HVOF Cr3C2/TiC–NiCrMo cermet coating, Wear, 233–235 (1999) 342.
DOI: 10.1016/s0043-1648(99)00242-2
Google Scholar
[8]
B.Q. Wang, Z.R. Shui, The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders, Wear, 253 (2002) 550.
DOI: 10.1016/s0043-1648(02)00049-2
Google Scholar
[9]
B. Wang, Erosion-corrosion of thermal sprayed coatings in FBC boilers, Wear, 199 (1996) 24.
DOI: 10.1016/0043-1648(96)06972-4
Google Scholar
[10]
B.S. Mann, V. Arya, Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: their application in hydro turbines, Wear, 249 (2001) 354.
DOI: 10.1016/s0043-1648(01)00537-3
Google Scholar
[11]
R. Norling, I. Oblefjord, Erosion-Corrosion of Fe- and Ni-based Alloys at 555oC, Wear, 254 (2003) 173.
DOI: 10.1016/s0043-1648(02)00299-5
Google Scholar
[12]
K. J. Stein, B. S. Schorr, A. R. Marder, Erosion of Thermally Sprays MCr-Cr3C2 cermet coatings, Wear, 224 (1999) 153.
DOI: 10.1016/s0043-1648(98)00298-1
Google Scholar
[13]
H.S. Sidhu, B.S. Sidhu, S. Prakash, Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr coatings on the boiler tube steels using LPG as the fuel gas, J. Mater. Proc. Technol, 171 (2006) 77.
DOI: 10.1016/j.jmatprotec.2005.06.058
Google Scholar
[14]
T. Sahraoui, N. E. Fenineche, G. Montavon, C. Coddet, Structure and wear behaviour of HVOF sprayed Cr3C2–NiCr and WC–Co coatings, Mater. Design, 24 (2003) 309.
DOI: 10.1016/s0261-3069(03)00059-1
Google Scholar
[15]
S.B. Mishra, S. Prakash, K Chandra, Studies on erosion behavior of plasma sprayed coatings on a Ni-based superalloy, Wear, 260 (2006) 422.
DOI: 10.1016/j.wear.2005.02.098
Google Scholar
[16]
B. Wang, S. W. Lee, Erosion–corrosion behaviour of HVOF NiAl–Al2O3 intermetallic-ceramic coating, Wear, 239 (2000) 83.
DOI: 10.1016/s0043-1648(00)00309-4
Google Scholar
[17]
J.K.N. Murthy, D.S. Raob, B. Venkataraman, Effect of Grinding on the Erosion Behavoir of a WC-Co-Cr Coating Deposited by HVOF and Detonation Gun Spray Processes , Wear, 249 (2001) 592.
DOI: 10.1016/s0043-1648(01)00682-2
Google Scholar
[18]
R. Jr. Bellman, A. Levy, Erosion mechanism in ductile metals, Wear, 70 (1981) 1.
DOI: 10.1016/0043-1648(81)90268-4
Google Scholar
[19]
J.A. Hearley, J.A. Little, A.J. Sturgeon, The erosion behaviour of NiAl intermetallic coatings produced by high velocity oxy-fuel thermal spraying, Wear, 233–235 (1999) 328.
DOI: 10.1016/s0043-1648(99)00240-9
Google Scholar