Ex Situ Doping of ZnO Nanorods by Spray Pyrolysis Technique

Article Preview

Abstract:

An ultraviolet (UV) shielding agent based on Fe-doped zinc oxide nanorods (ZnONRs) was synthesized by ex-situdoping using spray pyrolysis technique. These Fe-doped ZnO NRs could reduce the inherent photocatalytic activity of zinc oxide while still maintaining their ultraviolet filtering capability. In this work, the effect of doping duration by spray pyrolysis technique on the optical property and photocatalytic efficiency of ZnO NRs was studied. The room temperature photoluminescence (PL) analysis on the Fe-doped ZnO NRs indicates the red-shift of violet emission peak, i.e. from 378.97 nm (undoped) to 381.86 nm (60 mins.doping). Besides, the reduction of IUV/Vis ratio of PL reveals that the ex-situ Fe doping deteriorated the crystal quality of ZnO NRs. The photocatalytic study shows that the rate constant of Fe-doped ZnO NRs was smaller than the undoped ZnO NRs. It means that the Fe-doped ZnO NRs were less effective in degrading the RhB solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-23

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.I. Park, and G.C. Yi, Adv. Mater. 16 (2004) 87-90.

Google Scholar

[2] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14 (2002) 158-160.

Google Scholar

[3] A. Bacheri, M. Durr, P.L. Nostr, and P. Baglioni, J. Nanopart. Res., 10 (2008) 679-689.

Google Scholar

[4] P. J. Barker, A. Branch, Prog. Org. Coat. 62 (2008) 313-320.

Google Scholar

[5] S.R. Morrison, T. Freund, J. Chem. Phys. 47 (1967) 1543-1552.

Google Scholar

[6] L. Sun, J. A. Rippon, P. G. Cookson, O.Koulaeva, and X.G. Wang, Chem. Eng. J. 147 (2009) 391-398.

Google Scholar

[7] N. Serpone, A. Salinaro, A. Emeline, Nanoparticles Nanostruct. Surf: Novel Rep. Biol. Appl. 2 (2001) 86-98.

Google Scholar

[8] J.P. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 22 (2002) 49-59.

Google Scholar

[9] J.F. Wang, T. Tsuzuki, L. Sun, and X, Wang, J. Am. Ceram. Soc. 92 (2009) 2083-2088.

Google Scholar

[10] R.L. He, R. K. Hocking, T, Tsuzuki, Mat. Chem. Phys. 132 (2012) 1035-1040.

Google Scholar

[11] A. Ismardi, T.Y. Tiong, C.F. Dee et al., presented at the ICSE 2010 Proc. 2010, Melaka, Malaysia, (2010) 260-262 (unpublished).

Google Scholar

[12] G.Z. Xing, J.B. Yi, J.G. Tao, et al. Adv. Mater. 20 (2008) 3521-3527.

Google Scholar

[13] P. Mohanty, B. Kim, J. Park, Mater. Sci. Eng. B 138 (2007) 224-227.

Google Scholar

[14] K.W. Liu, M. Sakurai, M. Aono, J. Appl. Phys. 108 (2010) 043516, 1-5.

Google Scholar

[15] K.J. Kim, Y.R. Park, J. Appl. Phys. 96 (2004) 4150-4153.

Google Scholar

[16] C. Xia, C. Hu, Y. Tian, P. Chen, B. Wan, J. Xu, Solid State Sci. 13 (2011) 388-393.

Google Scholar

[17] Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Inorg. Chem.46 (2007) 6980-6986.

DOI: 10.1021/ic700688f

Google Scholar

[18] K.Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68 (1996) 403-405.

Google Scholar

[19] X.L. Wu, G.G. Siu, C.L Fu, H.C. Ong, Appl. Phys. Lett. 78 (2001) 2285-2287.

Google Scholar

[20] H.Y. Yang, S.F. Yu, S.P. Lau, T.S. Herng, M. Tanemura, Nanoscale Res. Lett. 5 (2010) 247-251.

Google Scholar

[21] K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81 (2002) 1420-1422.

Google Scholar

[22] R. Mohan, K. Krishnamoorthy, S-J. Kim, Solid State Com. 152 (2012) 375-380.

Google Scholar

[23] J. Fu, Y. Tian, B. Chang, F. Xi, X. Dong, J. Mater. Chem. 22 (2012) 21159-21166.

Google Scholar

[24] D.M. Sherman, Environments. Geochimicaet Cosmochimica Acta, 69 (2005) 3249-3255.

Google Scholar

[25] B. Viswanathan, Photo -Electrochemical Processes - Principles and Possibilities. 2011, Chennai: National Centre for Catalysis Research Indian Institute of Technology Madras. 1-73.

Google Scholar