Effect of CVD Synthesis Parameters on the Growth of Catalyst-Free ZnO NRs

Article Preview

Abstract:

The main development of ZnO nanorods (NRs) is focused on the gold catalyst and heteroepitaxial approach.However, the presence of Au may generate undesired deep level traps in the ZnO bandgap, which could be very harmful to the performance of transistors. The objective of this study is to synthesize ZnO NRs via homoepitaxial growth without using foreign catalyst by Chemical Vapour Deposition (CVD) technique. The growth of catalyst-free ZnO NWs at different CVD synthesis parameters such as amount of Zn powder, substrate location and synthesis duration on the catalyst-free ZnO NRs were studied systematically. The effect of these parameters on the size and areal density of ZnO NRs provided a better understanding on the growth mechanism of NRs via the Vapour-Solid (VS) mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-30

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Maeda, I. Niikura and T. Fukuda, Growth of 2 inch ZnO bulk single crystal by the hydrothermal method, Semicond. Sci. Technol. 20 (2005) 49.

DOI: 10.1088/0268-1242/20/4/006

Google Scholar

[2] P.X. Gao and Z.L. Wang, Nanoarchitectures of semiconducting and piezoelectric zinc oxide, J. Appl. Phys. 97 (2005) 044304.

Google Scholar

[3] Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng and J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett. 85 (2004) 5923-5925.

DOI: 10.1063/1.1836870

Google Scholar

[4] L. Vayssieres, K. Keis , S.E. Lindquist and A. Hagfeldt, Purpose-Built Anisotropic Metal Oxide Material:  3D Highly Oriented Microrod Array of ZnO, J. Phys. Chem. B 105 (2001) 3350-3352.

DOI: 10.1021/jp010026s

Google Scholar

[5] L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li and L. Zhang, Direct Electrodeposition of ZnO Nanotube Arrays in Anodic Alumina Membranes, J. Phys. Chem. C 111 (2007) 7288-7291.

DOI: 10.1021/jp0711242

Google Scholar

[6] M. Lorentz, E.M. Kaidashev, A. Rahm et al., MgxZn1−xO (0 < x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition, Appl. Phys. Lett. 86 (2005) 143113.

Google Scholar

[7] L. Luo, B.D. Sosnowchik, L. Lin, Room temperature fast synthesis of zinc oxide nanowires by inductive heating, Appl. Phys. Lett. 90 (2007) 093101.

DOI: 10.1063/1.2709618

Google Scholar

[8] S.Y. Pung, K.L. Choy and X. Hou, Tip-growth mode and base-growth mode of Au-catalyzed ZnO nanowires by Chemical Vapour Deposition technique, J. Cryst. Growth 312 (2010) 2049-2055.

DOI: 10.1016/j.jcrysgro.2010.03.035

Google Scholar

[9] X.Q. Meng, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, Y.C. Liu and X.W. Fan, Growth temperature controlled shape variety of ZnO nanowires, Chem. Phys. Lett. 407 (2005) 91-94.

DOI: 10.1016/j.cplett.2005.03.069

Google Scholar

[10] J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee and S.T. Lee, Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers, Chem. Mater. 14 (2002) 1216-1219.

DOI: 10.1021/cm0107326

Google Scholar

[11] J.E. Allen, E.R. Hemesath, D.E. Pera, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, , R.E. Palmer and L.J. Lauhon, High-resolution detection of Au catalyst atoms in Si nanowires, Nature Nanotechnology 3 (2008) 168-173.

DOI: 10.1038/nnano.2008.5

Google Scholar

[12] A. Sekar, S.H. Kim, A. Umar and Y.B. Hahn, Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders, J. Cryst. Growth 277 (2005) 471-478.

DOI: 10.1016/j.jcrysgro.2005.02.006

Google Scholar

[13] C.M. Drum and J.W. Mitchell, Electron microscopic examination of role of axial dislocations in growth of AlN whiskers, Appl. Phys. Lett. 4 (1964) 164.

DOI: 10.1063/1.1754015

Google Scholar

[14] W.W. Webb, R.D. Dragsdorf and W.D. Forgeng, Dislocations in whiskers, Phys. Rev. 108 (1957) 498-499.

DOI: 10.1103/physrev.108.498

Google Scholar