Synthesis and Characterization of Grape-Like SnO2 Structures Grown by a Thermal Evaporation Method

Article Preview

Abstract:

Grape-like tin dioxide (SnO2) structures have been grown on p-type silicon (Si(100)) substrate synthesized by thermal evaporation of tin (Sn) without use of metal catalyst. The experiment were conducted in a three-zone tube furnace at a constant temperature of 1080°C,under 1.6% of oxygen (O2) gas in an atmospheric ambient with a controlled flow rate of 1.0L/min. The prepared SnO2 film was characterized by using X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy(EDX) and photoluminescence (PL) measurement. The grape-like SnO2 structures were highly crystalline with particle size (resemble grape fruit) ranging from 120-550 nm and diameter of wire (resemble grape stem) around 120-160 nm.The PL spectrum of the grape-like SnO2 structures exhibits a broad visible light emission with a peak centered at around 623 nm, corresponding to 1.99 eV and usual near band edge emission of SnO2 is not observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Adv. Funct. Mater. 13 (2003) 605-614.

DOI: 10.1002/adfm.200390013

Google Scholar

[2] J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Beaklike SnO2 nanorods with strong photoluminescent, Small 2 (2006) 116-120.

DOI: 10.1002/smll.200500210

Google Scholar

[3] Y. Tian, H.B. Lu, J.C. Li, Y. Wu, Q. Fu, Synthesis, characterization and photoluminescence properties of ZnO hexagonal pyramids by the thermal evaporation method, Phys. E 43 (2010) 410-414.

DOI: 10.1016/j.physe.2010.08.024

Google Scholar

[4] H.W. Kim, M.H. Kong, J.-H. Yang, Catalyst-free growth of magnesium oxide whiskers and their characteristics, Acta Phys. Pol. A 113 (2008) 1021-1024.

DOI: 10.12693/aphyspola.113.1021

Google Scholar

[5] P.G. Li, X. Guo, X.F. Wang, W.H. Tang, Synthesis, photoluminescence and dielectric properties of O-deficient SnO2 nanowires, J. of Alloys and Comp. 479 (2009) 74-77.

DOI: 10.1016/j.jallcom.2009.01.054

Google Scholar

[6] M. Zaien, K. Omar, Z. Hassan, Synthesis of dendrite-like petals of CdO nanostructures, Appl. Surf. Sci. 257 (13) (2011) 5563-5565.

Google Scholar

[7] R. Yousefi, M.R. Muhamad, Effects of gold catalysts and thermal evaporation method modifications on the growth process of Zn1-xMgxO nanowires, J. of Solid State Chem. 183 (2010) 1733-1739.

DOI: 10.1016/j.jssc.2010.05.007

Google Scholar

[8] M. Salavati-Niasari, N. Mir, F. Davar, Synthesis, characterization and optical properties of tin oxide nanoclusters prepared from a novel precursor via thermal decomposition route, Inorg. Chim. Acta 363 (2010) 1719-1726.

DOI: 10.1016/j.ica.2010.03.024

Google Scholar

[9] S. Park, C. Hong, J. Kang, N. Cho, C. Lee, Growth of SnO2 nanowires by thermal evaporation on Au-coated Si substrates, Curr. Appl. Phys. 9 (2009) S230-S233.

DOI: 10.1016/j.cap.2009.01.049

Google Scholar

[10] Z. Chen, N.Q. Wu, Z.W. Chan, S.X. Li, C.B. Jiang, M.K.K. Chyu, S.X. Mao, Effects of N2 flow rate on morphology and structure of ZnO nanocrystals synthesized via vapor deposition, Scripta Materialia 52 (2005) 63-67.

DOI: 10.1016/j.scriptamat.2004.08.024

Google Scholar

[11] A. Khan, S.N. Khan, W.M. Jadwisienczak, M.E. Kordesch, Growth and optical properties for non-catalytically grown ZnO micro-tubules by simple thermal evaporation, Mater. Lett. 63 (2009) 2019-2021.

DOI: 10.1016/j.matlet.2009.06.038

Google Scholar

[12] H.W. Kim, S.H. Shim, J.W. Lee, growth of MgO thin films with subsequent fabrication of ZnO rods: Structural and photoluminescence properties, Thin Solid Films 515 (2007) 6433-6437.

DOI: 10.1016/j.tsf.2006.11.071

Google Scholar

[13] Z.W. Chen, Z. Jiao, M.H. Wu, C.H. Shek, C.M.L. Wu, J.K.L. Lai, Microstructural evolution of oxides and semiconductor thin films, Prog. in Mater. Sci. 56 (2011) 901-1029.

DOI: 10.1016/j.pmatsci.2011.02.001

Google Scholar

[14] JCPDS-International center for diffraction data, Card No. 01-077-0450.

Google Scholar

[15] H.I. Abdulgafour, Z. Hassan, N.H. Al-Hardan, F.K. Yam, Growth of high-quality ZnO nanowires without a catalyst, Phys. B: Cond. Matt. 405 (2010) 4216-4218.

DOI: 10.1016/j.physb.2010.07.013

Google Scholar

[16] S.N.F. Hasim, M.A.A. Hamid, R. Shamsudin, S. Radiman, A. Jalar, Surface morphology of metal oxide SnO2 under different concentrations of oxygen by thermal evaporation method, Adv. Mater. Res. 501 (2012) 266-270.

DOI: 10.4028/www.scientific.net/amr.501.266

Google Scholar

[17] H.W. Kim, S.H. Shim, C. Lee, SnO2 microparticles by thermal evaporation and their properties, Ceramics International 32 (2006) 943-946.

DOI: 10.1016/j.ceramint.2005.06.015

Google Scholar

[18] H.W. Kim, S.H. Shim, Synthesis and characteristics of SnO2 needle-shaped nanostructures, J. of Alloys and Comp. 426 (2006) 286-289.

DOI: 10.1016/j.jallcom.2006.01.093

Google Scholar

[19] H.W. Kim, S.H. Shim, J.H. Myung, Synthesis and characteristics of SnO2 nanorods on Pd-coated substrates. Braz. J. of Phys. 35 (2005) 1006-1009.

DOI: 10.1590/s0103-97332005000600016

Google Scholar