Preparation and Thermal Stability Characterization of Copper Tin Selenide Semiconductor Nanoparticles

Article Preview

Abstract:

Copper tin selenide (Cu2SnSe3) nanoparticle powders were successfully synthesized via chemical precipitation method at room temperature. Elemental composition analysis determined byenergy dispersive X-ray confirmed that the Cu2SnSe3 nanoparticles were successfully formed. Field emission scanning electron and transmission electron micrograph showed the presence of homogeneous distribution of the small spherical nanoparticles in the Cu2SnSe3 powders. The thermal stability of the Cu2SnSe3 structure has been investigated by X-ray diffraction at temperatures ranging from 100 to 523 K. Differential scanning calorimetry and thermogravimetric analysis have been conducted to evaluate the thermal stability and it is found that the maximum temperature of the Cu2SnSe3 nanoparticles can withstand until 600 K. The results show that Cu2SnSe3 nanoparticles exhibited a stable structure at temperature range of 100 – 523 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-73

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.P. Spitzer, Lattice thermal conductivity of semiconductors: A chemical bond approach, J. Phys. Chem. Solids, 31 (1970) 19-40.

DOI: 10.1016/0022-3697(70)90284-2

Google Scholar

[2] J.L. Shay, J.H. Wernick, Ternary chalcopyrite semiconductors: growth, electronic properties and applications, Pergamon, Oxford, 1975.

DOI: 10.1016/b978-0-08-017883-7.50012-3

Google Scholar

[3] W.F. Kuhs, R. Nitsche, K. Scheunemann, The argyrodites -- A new family of tetrahedrally close-packed structures, Mater. Res. Bull., 14 (1979) 241-248.

DOI: 10.1016/0025-5408(79)90125-9

Google Scholar

[4] L.K. Samanta, D.K. Ghosh, G.C. Bhar, Some Potential Mixed Chalcopyrite Crystals for Nonlinear Laser Devices, Phys. Status Solidi A, 93 (1986) K51-K54.

DOI: 10.1002/pssa.2210930163

Google Scholar

[5] L.K. Samanta, On some properties of I2-IV-VI3 compounds, Phys. Status Solidi A, 100 (1987) K93-K97.

DOI: 10.1002/pssa.2211000165

Google Scholar

[6] S.I. Boldish, W.B. White, Optical band gaps of selected ternary sulfide minerals, Am. Mineral., 83 (1998) 865-871

DOI: 10.2138/am-1998-7-818

Google Scholar

[7] X.-a. Chen, H. Wada, A. Sato, M. Mieno, Synthesis, Electrical Conductivity, and Crystal Structure of Cu4Sn7S16 and Structure Refinement of Cu2SnS3, J. Solid State Chem., 139 (1998) 144-151.

DOI: 10.1006/jssc.1998.7822

Google Scholar

[8] M. Onoda, X.-a. Chen, A. Sato, H. Wada, Crystal structure and twinning of monoclinic Cu2SnS3, Mater. Res. Bull., 35 (2000) 1563-1570.

DOI: 10.1016/s0025-5408(00)00347-0

Google Scholar

[9] G. Marcano, D.B. Bracho, C. Rincon, G.S. Perez, L. Nieves, On the temperature dependence of the electrical and optical properties of Cu2GeSe3, J. Appl. Phys., 88 (2000) 822-828.

DOI: 10.1063/1.373743

Google Scholar

[10] E.J. Skoug, J.D. Cain, D.T. Morelli, Thermoelectric properties of the Cu2SnSe3-Cu2GeSe3 solid solution, J. Alloys Compd., 506 (2010) 18-21.

DOI: 10.1016/j.jallcom.2010.06.182

Google Scholar

[11] K. Jain, R.K. Sharma, S. Kohli, K.N. Sood, A.C. Rastogi, Electrochemical deposition and characterization of cadmium indium telluride thin films for photovoltaic application, Curr. Appl. Phys., 3 (2003) 251-256.

DOI: 10.1016/s1567-1739(02)00211-0

Google Scholar

[12] L.I. Berger, V.D. Prochukhan, Ternary diamond-like semiconductors, Consultants Bureau, New York, 1969.

Google Scholar

[13] R. Feigelson, Heavy Metal Ternary Compounds for Infrared Acousto-Optic Applications, Jpn. J. Appl. Phys., 19 (1980) 371-376.

DOI: 10.7567/jjaps.19s3.371

Google Scholar

[14] G. Marcano, C. Rincon, L.M. de Chalbaud, D.B. Bracho, G.S. Perez, Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3, J. Appl. Phys., 90 (2001) 1847-1853.

DOI: 10.1063/1.1383984

Google Scholar

[15] V.M. Garcia, P.K. Nair, M.T.S. Nair, Copper selenide thin films by chemical bath deposition, J. Cryst. Growth, 203 (1999) 113-124.

DOI: 10.1016/s0022-0248(99)00040-8

Google Scholar

[16] M.D. Kannan, R. Balasundaraprabhu, S. Jayakumar, P. Ramanathaswamy, Preparation and study of structural and optical properties of CSVT deposited CuInSe2 thin films, Sol. Energy Mater. Sol. Cells, 81 (2004) 379-395.

DOI: 10.1016/j.solmat.2003.11.014

Google Scholar

[17] M. Dhanam, P.K. Manoj, R.R. Prabhu, High-temperature conductivity in chemical bath deposited copper selenide thin films, J. Cryst. Growth, 280 (2005) 425-435.

DOI: 10.1016/j.jcrysgro.2005.01.111

Google Scholar

[18] E.-H.M. Diefallah, A.Y. Obaid, A.A. Samarkandy, M.M.A. Badei, A.A. El-Bellihi, Formation of Copper-Chromium Sulfide Spinel and Thermal Decomposition Reactions in CuS-Cr2S3 Crystalline Mixtures, J. Solid State Chem., 117 (1995) 122-126.

DOI: 10.1006/jssc.1995.1254

Google Scholar