Elucidating the Dependence of Size and Concentration of Gold Nanoparticles in Cellular Uptake

Article Preview

Abstract:

Nanoscale particles of gold nowadays dominate a great deal of attention for biomedical applications. Better knowledge of the nano-bio interface will lead to advanced biomedical tools for diagnostic imaging and therapeutics. In this review, recent progress in the elucidating of how size and concentration of gold nanoparticles (AuNPs) affect cellular uptake will be discussed. Due to its small size, AuNPs can be administered conveniently via intravenous injection. The ability to enter cells is one of the factors that determine the clinical utility of nanoparti¬cles (NPs). The size of AuNPs is one of the limitations in the potential use of gold markers for medical imaging or tracking of harder tumors. Within the size range of 10-100 nm, AuNPs of diameter 50 nm demonstrate the highest uptake. Efficient accumulation of AuNPs into cells also can be achieved at higher concentration. The fewer AuNPs are in the solution, the lesser chance for a receptor to receive gold nanoparticle; “mem¬brane wrapping” time is longer, resulting to lower uptake by the cell. Theoretical models support the size- and concentration-dependent NP-uptake. Endocytosis is one of the major pathways for cellular uptake of NPs. NPs are internalized by cells through endocytosis process and trapped in endosomes, which is then fuse with lysosomes for processing before being transported to the cell periphery for excretion. Exocytosis of NPs is also dependent on the size and concentration of the NPs, however, the trend is different compared to endocytosis process. These findings provide useful information in the design and optimization of the NP-uptake at a single cell level for effective applications in imaging, diagnosis, therapeutics, and targeting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-211

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Vodnik and A. Leskovac, Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 3, p.1367–1376, 2011.

Google Scholar

[2] H. K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, and A. K. Dasgupta, Nanomedicine : Nanotechnology, Biology, and Medicine, vol. 3, no. 2, p.111–9, Jun. 2007.

DOI: 10.1016/j.nano.2007.03.005

Google Scholar

[3] G. Sonavane, K. Tomoda, and K. Makino, Colloids and Surfaces. B, Biointerfaces, vol. 66, no. 2, p.274–80, Oct. 2008.

Google Scholar

[4] W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, Nature Nanotechnology, vol. 3, no. 3, p.145–50, Mar. 2008.

Google Scholar

[5] D. B. Chithrani, Insciences Journal, vol. 1, no. 3, p.115–135, Jul. 2011.

Google Scholar

[6] B. D. Chithrani, J. Stewart, C. Allen, and D. a. Jaffray, Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 5, no. 2, p.118–127, Jun. 2009.

DOI: 10.1016/j.nano.2009.01.008

Google Scholar

[7] A. M. Alkilany and C. J. Murphy, Journal of Nanoparticle Research : An Interdisciplinary Forum for Nanoscale Science and Technology, vol. 12, no. 7, p.2313–2333, Sep. 2010.

Google Scholar

[8] Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, Nanoscale Research Letters, vol. 4, no. 8, p.858–864, Jan. 2009.

Google Scholar

[9] C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Accounts of Chemical Research, vol. 41, no. 12, p.1721–30, Dec. 2008.

DOI: 10.1021/ar800035u

Google Scholar

[10] H. Gao, W. Shi, and L. B. Freund, Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, p.9469–74, Jul. 2005.

Google Scholar

[11] A. C. Sabuncu, J. Grubbs, S. Qian, T. M. Abdel-Fattah, M. W. Stacey, and A. Beskok, Colloids and Surfaces. B, Biointerfaces, vol. 95, p.96–102, Jun. 2012.

DOI: 10.1016/j.colsurfb.2012.02.022

Google Scholar

[12] B. D. Chithrani, A. a Ghazani, and W. C. W. Chan, Nano Letters, vol. 6, no. 4, p.662–8, Apr. 2006.

Google Scholar

[13] H. Jin, D. a Heller, R. Sharma, and M. S. Strano, ACS Nano, vol. 3, no. 1, p.149–58, Jan. 2009.

Google Scholar

[14] J. D. Trono, K. Mizuno, N. Yusa, T. Matsukawa, K. Yokoyama, and M. Uesaka, Journal of Radiation Research, vol. 52, no. 1, p.103–109, 2011.

Google Scholar

[15] D. T. Mustafa, F. Watanabe, W. Monroe, M. Mahmood, Y. Xu, L. M. Saeed, A. Karmakar and S. A. and A. S. B. Casciano, Journal of Nanomedicine & Nanotechnology, vol. 02, no. 06, 2011.

Google Scholar

[16] R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. Bhonde, and M. Sastry, Langmuir 2005, 21, 10644–10654.

DOI: 10.1021/la0513712

Google Scholar

[17] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, Small 2005, 1, 325–327.

Google Scholar

[18] C. M. Goodman, C. D. McCusker, T. Yilmaz, and V. M. Rotello, Bioconjugate Chem. 2004, 15, 897–900.

Google Scholar

[19] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, Journal Controlled Release 2006, 114, 343–347.

DOI: 10.1016/j.jconrel.2006.06.017

Google Scholar

[20] T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, Langmuir 2007, 23, 1596–1599.

Google Scholar

[21] H. K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, and A. K. Dasgupta, Nanomedicine 2007, 3, 111–119.

Google Scholar

[22] H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, Langmuir 2006, 22, 2–5.

DOI: 10.1021/la0520029

Google Scholar

[23] J. A. Khan, B. Pillai, T. K. Das, Y. Singh, and S. Maiti, ChemBioChem 2007, 8, 1237–1240.

Google Scholar