[1]
F. Q. Noman, The behavior of air borne particulates inside houses; its relevance to nuclear safety, PhD thesis, Imperial College of Science, Technology and Medicine, London, UK, 1996.
Google Scholar
[2]
B. Mills, Review of methods of odour control, Filtration and Separation, 32 (1995) 147-152.
Google Scholar
[3]
Z. M. Shareefdeen, A. Aidan, W. Ahmed, M. B. Khatri, M. Islam, R. Lecheheb, F. Shams, Hydrogen Sulphide removal using a novel biofilter media, International Journal of Chemical and Biological Engineering, 3(2010) 74-77.
Google Scholar
[4]
N. Shahzad, S. T. Hussain, S. Asima, M. A. Baig, A Comparison of TiO2 nanoparticles and nanotubes for catalytic gas phase destruction of H2S Gas at high temperatures, Journal of Nanoscience and Nanotechnology, 12 (2012) 5061-5065.
DOI: 10.1166/jnn.2012.4934
Google Scholar
[5]
H. Ibrahim, H. Lasa, Photocatalytic conversion of air borne pollutants effect of catalyst type loading in a novel photo-CREC-air unit, Applied Catalysis. B. Environmental, 38 (2002) 201–213.
DOI: 10.1016/s0926-3373(02)00043-7
Google Scholar
[6]
K. Suzuki, S. Satoh, T. Yoshida, Photocatalytic deodorization on TiO2 coated honeycomb ceramics, Denki Kagaku, 59 (1991) 521-523.
DOI: 10.5796/kogyobutsurikagaku.59.521
Google Scholar
[7]
W. F. Jardim, C. P. Huang, Gas-phase photocatalytic destruction of H2S using UV/TiO2, Presented at the 6th International Symposium, Chemical Oxidation, Technology for the Nineties, Vanderbilt University, Nashville, USA, 1996.
Google Scholar
[8]
M. C. Canela, M. A. Rosana, W. F. Jardim, Gas-phase destruction of H2S using TiO2/UV-VIS, Journal of Photochemistry and Photobiology A: Chemistry, 12 (1998) 73-80.
DOI: 10.1016/s1010-6030(97)00261-x
Google Scholar
[9]
K. M. Lee, V. Suryanarayanan, K. C. Ho, A Study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells, 91 (2007) 1416-1420.
DOI: 10.1016/j.solmat.2007.03.007
Google Scholar
[10]
T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, S. S. Ramkumar, Electrospinning of Nanofibers, Journal of Applied Polymer Science, 96 (2005) 557-569.
DOI: 10.1002/app.21481
Google Scholar
[11]
S. Ramakrishna, K. Fujihara, W.E. Wee-Eong Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues, Materials Today, 9 (2006) 40-50.
DOI: 10.1016/s1369-7021(06)71389-x
Google Scholar
[12]
Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Comp. Sci. Tech. 63 (2003) 2223-2253.
DOI: 10.1016/s0266-3538(03)00178-7
Google Scholar
[13]
N. Deedar, Synthesis of TiO2 based nanoparticles and their application in arsenic removal from drinking water, MS thesis. NUST, Pakistan, 2007.
Google Scholar
[14]
F. Wei, L. Ni, P. Cui, Preparation and characterization of N-S-co-doped TiO2 photocatalyst and its photocatalytic activity, J. Hazard Mater. 156 (2008) 135–140.
DOI: 10.1016/j.jhazmat.2007.12.018
Google Scholar
[15]
M. V. Reddy, R. Jose, T. H. Teng, B. V. R. Chowdari, S. Ramakrishna, Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles, Electrochimica Acta, 55 (2010) 3109–3117.
DOI: 10.1016/j.electacta.2009.12.095
Google Scholar
[16]
M. Hamadanian, A. Akbari, V. Jabbari, Electrospun titanium dioxide nanofibers: Fabrication, properties and its application in photo-oxidative degradation of Methyl Orange (MO), Fibers and Polymers, 12 (2011) 880-885.
DOI: 10.1007/s12221-011-0880-z
Google Scholar
[17]
S. Chuangchote, J. Jiputti, T. Sagawa, S. Yoshikawa, Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers, Applied Materials and Interfaces, 1 (2009) 1140–1143.
DOI: 10.1021/am9001474
Google Scholar