Synthesis, Structural and Sensor Characterization of Ga-ZnO Nanodisk/Nanorods Prepared by One Step Polymer Assisted Hydrothermal Process on AlN/Si Substrate

Article Preview

Abstract:

Synthesis and characterization of Ga-doped ZnO nanodisk and the formation of nanodisk/nanorod hybrid morphologies on AlN/Si substrate by polymer assisted one-pothydrothermal process have been studied. The morphology and structural properties were determined by field emission scanning electron microscopy (FESEM) and X-ray diffraction techniques. FESEM images clearly confirm the pure nanodisk formation for Ga-ZnO(0.5) at optimized ZnO concentration and hybrid nanodisk/nanorod formation obtained for Ga-ZnO (0.2) at lower ZnO concentration. The pure Ga-ZnO (0.5) nanodisk on AlN/Si thin film substrate showed effective response and fast recovery time towards UV light sensing in dark condition compared to low concentration route preparedGa-ZnO (0.2)/AlN/Si sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-258

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Hammarberg, A. Prodi-Schwab, C. Feldmann, J. Colloid. Inter. Sci. 334 (2009) 29.

Google Scholar

[2] Y.Q. Li, S.Y. Fu, Y.W. Mai, Polymer 47 (2006) 2127.

Google Scholar

[3] Y.Q. Li, Y.Yang, C.Q. Sun, S.Y. Fu, J. Phys. Chem. C 112 (2008)17397.

Google Scholar

[4] M. Kitano,M. Shiojiri, Powder. Technol.  93 (1997) 267.

Google Scholar

[5] S.F.Du, Y.J. Tian, J. Liu, H.D. Liu, Y.F. Chen, Mater. Lett. 60 (2006) 3133.

Google Scholar

[6] S.F.  Du, Y.J. Tian, H.D. Liu, J. Liu, Y.F. Chen,  J. Am. Ceram. Soc. 89 (2006) 2440.

Google Scholar

[7] S. Hartner, M. Ali, C. Schulz, M.Winterer,  H.Wiggers,  Nanotechnology 20 (2009) 445701.

Google Scholar

[8] C.H. Lee, K.S. Lim, J.S. Song, Sol. Energ. Mater. Soc. C 43 (1996) 37.

Google Scholar

[9] V. Khranovskyy, U. Grossner, V. Lazorenko, G. Lashkarev, B.G. Svensson, R. Yakimova, Superlattice. Microst. 42 (2007) 379.

DOI: 10.1016/j.spmi.2007.04.073

Google Scholar

[10] K.J. Chen, T.H. Fang, F.Y. Hung, L.W. Ji, S.J. Chang, S.J. Young, Appl. Surf. Sci. 254   (2008) 5791.

Google Scholar

[11] S. Cimitan, S. Albonetti, L. Forni, F. Peri, D. Lazzari, J. Colloid. Inter. Sci. 32 (2009) 73.

Google Scholar

[12] Y.-Q.  Li, K. Yong, H-M. Xiao, W-J. Ma, G-L. Zhang, S-Y. Fu, Mater. Lett. 64 (2010)   1735.

Google Scholar

[13] S. Ameen, M. Akhtar, Y. Kim, O. Yang, H. S. Shin, Microchimica Acta. 172 (2011) 471.

Google Scholar

[14] H.S. Hong, G.S. Chung, J. Korean. Phys. Soc. 54 (2009) 1519.

Google Scholar

[15] C.Y. Tsay, C.W. Wu, C.M. Lei, F.S. Chen, C.K. Lin, Thin Solid Films 519 (2010)1516.

Google Scholar

[16] N. Yahya, H. Daud, N. Ali Tajuddin, H. Mohd Daud,  A.Shafie, P. Puspitasari,   Journal of Nano Research 11 (2010) 25.

DOI: 10.4028/www.scientific.net/jnanor.11.25

Google Scholar

[17] R. Jothi Ramalingam, G.S. Chung, Mater. Lett. 68 (2012) 247.

Google Scholar

[18] K. Kim, Y. Song, S. Chang, I. Kim, S. Kim, S. Y. Lee, Thin Solid Films 518 (2009) 1190.

Google Scholar

[19] C.X. Su, X.W. Sun, Z.L. Dong, M.B. Yu, Appl. Phys. Lett. 85 (2004) 3878.

Google Scholar

[20] J. Qi, Y. Zhang, Y. Huang, Q. Liao, J. Liu, Appl. Phys. Lett. 89 (2006) 252115.

Google Scholar

[21] J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z. L.Wang, Nanotechnology 21,  (2010) 405203.

Google Scholar

[22] K. Kotsis, V. Staemmler, Phys. Chem. Chem. Phys. 8 (2006) 1490.

Google Scholar

[23] J.E. Jaffe, R. Pandey, A.B. Kunz, J. Phys. Chem. Solids, 52 (1991) 755.

Google Scholar