Antibacterial Activity of Ag-TiO2 Nanoparticles with Various Silver Contents

Article Preview

Abstract:

Bacterial are highly transmitted in our environment and have been identified as a primary contributor to the problem of indoor air quality and consequently lead to the illness of the occupants. Recently, nanotechnology represents an innovative approach to develop new formulations based on metallic nanoparticles with antimicrobial properties. TiO2 has great promise to diminish bacterial activity. Antimicrobial activity of TiO2and Ag-TiO2 nanoparticles against Escherichia coli was examined in this study. TiO2 nanoparticles with various silver contents were synthesized by sol gel method to produce uniform size, unagglomerated state and homogeneous nanoparticles. The nanoparticles were characterized by X-Ray diffraction (XRD) and transmittance electron microscopy (TEM). The effects of different silver concentration were studied using cotton diffusion test under fluorescence light irradiation. 0.06 mol % Ag-TiO2 revealed best antibacterial activity. 0.06 mol % Ag-TiO2 have antibacterial inhibition zone of 38 mm at the concentration of 2.0 M against E. coli. Swab test bacterial counts on left palm, tile, mouse pad and cotton have been tested before and after spraying with 0.06 mol % Ag-TiO2. It showed that the bacterial count decreased for entire samples. The significant enhancement in the antibacterial properties of Ag-TiO2 nanoparticles under visiblelight irradiation is related to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. The phase structure, crystallite size and crystallinity of TiO2 also play an important role inantibacterial activity. The killing mechanism of Ag-TiO2 undervisible light irradiation antibacterial activity over Ag-TiO2nanoparticles was proposed based on our observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-245

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiology Letters. 29 (1985) 211-214.

DOI: 10.1111/j.1574-6968.1985.tb00864.x

Google Scholar

[2] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry. 32 (2004) 33–177.

DOI: 10.1016/j.progsolidstchem.2004.08.001

Google Scholar

[3] Y.Q. Wang, H.M. Zhang, R.H. Wang, Investigation of the interaction between colloidal TiO2 and bovine hemoglobin using spectral methods, Colloids and Surfaces B: Biointerfaces. 65 (2008) 190–196.

DOI: 10.1016/j.colsurfb.2008.04.001

Google Scholar

[4] W. Kangwansupamonkon, V. Lauruengtana, S. Surassmo, U. Ruktanonchai, Antibacterial effect of apatite-coated titanium dioxide for textiles applications, Nanomedicine: Nanotechnology Biology and Medicine. 5 (2009) 240-249.

DOI: 10.1016/j.nano.2008.09.004

Google Scholar

[5] Y.K. Jo, B.H. Kim, G. Jung, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Disease. 93 (2009) 1037-1043.

DOI: 10.1094/pdis-93-10-1037

Google Scholar

[6] A.A. Ashkarran, Antibacterial properties of silver-doped TiO2 nanoparticles under solar simulated light, Journal of Theoretical and Applied Physics. 4 (2011)1-8.

Google Scholar

[7] N. Haghighi, Y. Abdi, F. Haghighi, Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires, Applied Surface Science. 257 (2011) 10096-10100.

DOI: 10.1016/j.apsusc.2011.06.145

Google Scholar

[8] A.A. Ashkarran, S.M. Aghigh, M. Kavianipour, N.J. Farahani, Visible light photo and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Current Applied Physics. 11 (2011) 1048-1055.

DOI: 10.1016/j.cap.2011.01.042

Google Scholar

[9] S. Swetha, S. M. Santhosh, R.G. Balakrishna, Synthesis and comparative study of nano-TiO2 over Degussa P-25 in disinfection of water, Photochemistry and Photobiology. 86 (2010) 628–632.

DOI: 10.1111/j.1751-1097.2009.00685.x

Google Scholar

[10] C. Hu, J. Guo, J. Qu, X. Hu, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir. 23 (2007) 4982-4987.

DOI: 10.1021/la063626x

Google Scholar

[11] Y. Yuan, J. Ding, J. Xu, J. Deng, J. Guo, TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application, Journal of Nanoscience and Nanotechnology. 10 (2010) 1-7.

DOI: 10.1166/jnn.2010.2225

Google Scholar

[12] J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, R. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: a literature review, Atmospheric Environment. 43 (2009) 2229–2246.

DOI: 10.1016/j.atmosenv.2009.01.034

Google Scholar

[13] J. Jitputti, T. Rattanavoravipa, S. Chuangchote, S. Pavasupre, Y. Suzuki, S. Yoshikawa, Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets, Catalysis Communications. 10 (2009) 378–382.

DOI: 10.1016/j.catcom.2008.09.026

Google Scholar

[14] P. Cheng, C. Deng, M. Gu, X. Dai, Effect of urea on the photoactivity of titania powder prepared by sol–gel method, Materials Chemistry and Physics. 107 (2008) 77–81.

DOI: 10.1016/j.matchemphys.2007.06.051

Google Scholar

[15] S. Rahim, S. Radiman, A. Hamzah, Inactivation of Escherichia Coli under fluorescent lamp using TiO2 nanoparticles synthesized via sol gel method, Sains Malaysiana. 41 (2012) 219-224.

Google Scholar

[16] A.F. Shojaie, M.H Loghmani, La3+ and Zr4+ co-doped anatase nano TiO2 by sol microwave method, Chemical Engineering Journal. 157 (2010) 263-269.

DOI: 10.1016/j.cej.2009.12.025

Google Scholar

[17] L.H Kao, T.C Hsu, H.Y Lu, Sol-gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment, Journal of Colloid and Interface Science. 316 (2007) 160-167.

DOI: 10.1016/j.jcis.2007.07.062

Google Scholar

[18] S. Mahshid, M.S Ghamsari, M. Askari, N. Afshar, S. Lahuti, Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Semiconductor Physics, Quantum Electronics & Optoelectronics. 9 (2006) 65-68.

DOI: 10.15407/spqeo9.02.065

Google Scholar

[19] A. Markowska-Szczupak, K. Ulfig, A.W. Morawski, The application of titanium dioxide for deactivation of bioparticulates: An overview, Catalysis Today. 169 (2011) 249-257.

DOI: 10.1016/j.cattod.2010.11.055

Google Scholar

[20] Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Microporous and Mesoporous Materials. 114 (2008) 431–439.

DOI: 10.1016/j.micromeso.2008.01.032

Google Scholar

[21] S.A. Ibrahim, S. Sreekantan, Effect of pH on TiO2 nanoparticles via sol-gel method. Advanced Materials Research. 173 (2010) 184-189.

DOI: 10.4028/www.scientific.net/amr.173.184

Google Scholar

[22] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of Colloid and Interface Science, 275 (2004) 177–182.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[23] J.R. Morones, J.L. Elechiguerra A. Camacho, K. Holt, J.B Kouri, J.T. Ram´ırez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology. 16 (2005) 2346–2353.

DOI: 10.1088/0957-4484/16/10/059

Google Scholar