[1]
T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiology Letters. 29 (1985) 211-214.
DOI: 10.1111/j.1574-6968.1985.tb00864.x
Google Scholar
[2]
O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry. 32 (2004) 33–177.
DOI: 10.1016/j.progsolidstchem.2004.08.001
Google Scholar
[3]
Y.Q. Wang, H.M. Zhang, R.H. Wang, Investigation of the interaction between colloidal TiO2 and bovine hemoglobin using spectral methods, Colloids and Surfaces B: Biointerfaces. 65 (2008) 190–196.
DOI: 10.1016/j.colsurfb.2008.04.001
Google Scholar
[4]
W. Kangwansupamonkon, V. Lauruengtana, S. Surassmo, U. Ruktanonchai, Antibacterial effect of apatite-coated titanium dioxide for textiles applications, Nanomedicine: Nanotechnology Biology and Medicine. 5 (2009) 240-249.
DOI: 10.1016/j.nano.2008.09.004
Google Scholar
[5]
Y.K. Jo, B.H. Kim, G. Jung, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Disease. 93 (2009) 1037-1043.
DOI: 10.1094/pdis-93-10-1037
Google Scholar
[6]
A.A. Ashkarran, Antibacterial properties of silver-doped TiO2 nanoparticles under solar simulated light, Journal of Theoretical and Applied Physics. 4 (2011)1-8.
Google Scholar
[7]
N. Haghighi, Y. Abdi, F. Haghighi, Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires, Applied Surface Science. 257 (2011) 10096-10100.
DOI: 10.1016/j.apsusc.2011.06.145
Google Scholar
[8]
A.A. Ashkarran, S.M. Aghigh, M. Kavianipour, N.J. Farahani, Visible light photo and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Current Applied Physics. 11 (2011) 1048-1055.
DOI: 10.1016/j.cap.2011.01.042
Google Scholar
[9]
S. Swetha, S. M. Santhosh, R.G. Balakrishna, Synthesis and comparative study of nano-TiO2 over Degussa P-25 in disinfection of water, Photochemistry and Photobiology. 86 (2010) 628–632.
DOI: 10.1111/j.1751-1097.2009.00685.x
Google Scholar
[10]
C. Hu, J. Guo, J. Qu, X. Hu, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir. 23 (2007) 4982-4987.
DOI: 10.1021/la063626x
Google Scholar
[11]
Y. Yuan, J. Ding, J. Xu, J. Deng, J. Guo, TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application, Journal of Nanoscience and Nanotechnology. 10 (2010) 1-7.
DOI: 10.1166/jnn.2010.2225
Google Scholar
[12]
J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, R. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: a literature review, Atmospheric Environment. 43 (2009) 2229–2246.
DOI: 10.1016/j.atmosenv.2009.01.034
Google Scholar
[13]
J. Jitputti, T. Rattanavoravipa, S. Chuangchote, S. Pavasupre, Y. Suzuki, S. Yoshikawa, Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets, Catalysis Communications. 10 (2009) 378–382.
DOI: 10.1016/j.catcom.2008.09.026
Google Scholar
[14]
P. Cheng, C. Deng, M. Gu, X. Dai, Effect of urea on the photoactivity of titania powder prepared by sol–gel method, Materials Chemistry and Physics. 107 (2008) 77–81.
DOI: 10.1016/j.matchemphys.2007.06.051
Google Scholar
[15]
S. Rahim, S. Radiman, A. Hamzah, Inactivation of Escherichia Coli under fluorescent lamp using TiO2 nanoparticles synthesized via sol gel method, Sains Malaysiana. 41 (2012) 219-224.
Google Scholar
[16]
A.F. Shojaie, M.H Loghmani, La3+ and Zr4+ co-doped anatase nano TiO2 by sol microwave method, Chemical Engineering Journal. 157 (2010) 263-269.
DOI: 10.1016/j.cej.2009.12.025
Google Scholar
[17]
L.H Kao, T.C Hsu, H.Y Lu, Sol-gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment, Journal of Colloid and Interface Science. 316 (2007) 160-167.
DOI: 10.1016/j.jcis.2007.07.062
Google Scholar
[18]
S. Mahshid, M.S Ghamsari, M. Askari, N. Afshar, S. Lahuti, Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Semiconductor Physics, Quantum Electronics & Optoelectronics. 9 (2006) 65-68.
DOI: 10.15407/spqeo9.02.065
Google Scholar
[19]
A. Markowska-Szczupak, K. Ulfig, A.W. Morawski, The application of titanium dioxide for deactivation of bioparticulates: An overview, Catalysis Today. 169 (2011) 249-257.
DOI: 10.1016/j.cattod.2010.11.055
Google Scholar
[20]
Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Microporous and Mesoporous Materials. 114 (2008) 431–439.
DOI: 10.1016/j.micromeso.2008.01.032
Google Scholar
[21]
S.A. Ibrahim, S. Sreekantan, Effect of pH on TiO2 nanoparticles via sol-gel method. Advanced Materials Research. 173 (2010) 184-189.
DOI: 10.4028/www.scientific.net/amr.173.184
Google Scholar
[22]
I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of Colloid and Interface Science, 275 (2004) 177–182.
DOI: 10.1016/j.jcis.2004.02.012
Google Scholar
[23]
J.R. Morones, J.L. Elechiguerra A. Camacho, K. Holt, J.B Kouri, J.T. Ram´ırez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology. 16 (2005) 2346–2353.
DOI: 10.1088/0957-4484/16/10/059
Google Scholar