Solvent Controlled Synthesis of Tin Oxide Nanocatalysts and their Applications in Photodegradation of Environmental Hazardous Materials

Article Preview

Abstract:

Solvent controlled synthesis of tin oxide nanocatalysts were prepared via the hydrothermal method. To study the effect of solvent on the particle size of tin oxide and their catalytic efficiency on photodegradation of environmental hazardous materials, the synthesis was carried out at different concentrations of solvent (isoamyl alcohol) keeping all other reaction conditions constant. The nanoparticles were characterized by FourierTransmission Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray Diffraction and Thermogravimetric analysis. Prepared nanoparticles were applied as nanocatalyst under UV-visible light for the photodegradation of methyl green,which is an abundant organic pollutant of industrial waste water. Photodegradation activities of the nanocatalysts were measured in three different ways, i. pseudo first order rate constant, “k”. ii. percentage degradationand iii. degradation rate. Effect of solvent was quantitatively explained in term of double sphere model of ion-ion interaction. Degradation of pollutants was also monitored by High Performance Liquid Chromatography.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-204

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Anandan, V. Rajendran, J. Non-Oxide Glasses. 2 (2010) 83-89.

Google Scholar

[2] L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, Q. Xin, J. Phy. Chem.109 (2005) 8774-8778

Google Scholar

[3] M. K. Kennedy, F. E. Kruis, H. Fissan, Mater. Sci. Forum. 343 (2000) 949-954.

Google Scholar

[4] R. Adnan, N. A. Razana, I. A. Rehman, M. A. Farrukh, J. Chin. Chem. Soc. 57 (2010) 222-229.

Google Scholar

[5] R. Gavagnin, L. Biasetto, F. Pinna, G. Strukul, Appl. Catal. B-Environ. 38 (2000) 91-99.

Google Scholar

[6] A. N. M. Green, A. Palomares, S. A. Haque, J. M. Kroon, J. R. Durrant, J. Phy. Chem. B 109 (2005) 12525-12533.

Google Scholar

[7] J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 17 (2005) 582-586.

Google Scholar

[8] A. Hagemeyer, Z. Hogan, M. Schlichter, B. Smaka, G. Streukens, H. Turner, J. A. Volpe, H. Weinberg, K. Yaccato, Appl. Catal. A-Gen. 317 (2007) 139.

DOI: 10.1016/j.apcata.2006.09.040

Google Scholar

[9] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett., 7 2463-2469.(2007)

Google Scholar

[10] M. A. Farrukh, P. Tan, R. Adnan, Turk. J. Chem. 36 (2012) 303-314.

Google Scholar

[11] J. Zhu, B. Y. Tay, J. Ma, Mater. Lett. 60 (2006) 1003-1010.

Google Scholar

[12] A. C. Ibarguen, A. Mosquera, R. Parra, M. S. Castro, J. E. Rodríguez-Páez, Mater. Chem. Phys.101 (2007) 433.

Google Scholar

[13] R.S. Hiratsuka, S.H. Pulcinelli, C.V. Santilli, J. Non-Cryst. Sol. 121 (1990) 76-83.

Google Scholar

[14] G.X. Wang, Y. Chen, L. Yang, J. Yao, S.Needham, H.K. Liu, J.H. Ahn, , J. Power Sources, 146 (2005) 487-491.

Google Scholar

[15] W.–J. Li, E.–W. Shi, T. Fukuda, Cryst. Res. Tech. 38 (2003) 847-858.

Google Scholar

[16] K.-M.Chi, C.-C. Lin, Y.-H. Lu, J.-H. Liao, J. Chin. Chem. Soc. 47 (2000) 425.

Google Scholar

[17] P. M. Aneesh, K. A.Vanaja, M. K. Jayaraj, Nano Materials IV. 6639 66390J-1-66390J-9. (2007)

Google Scholar

[18] Y. Hou, H. Kondoh, T. Ohta, S. Gao, Appl. Surf. Sci. 241 (2005) 218-222.

Google Scholar

[19] N. Pinna, G. Neri, M. Antonietti, M. Niederberger, Angew. Chem. Int. Ed. 43 (2004) 4345 4445.

Google Scholar

[20] Y. J. Kim, Y. S. Kim, S. Y. Chai,D. H. Cha, Y. S. Choi,W. I. Lee, New J. Chem. 31 (2007) 260.

Google Scholar

[21] H.-S Goh, R. Adnan, M. A. Farrukh, Turk. J. Chem. 35 (2011) 375-391.

Google Scholar

[22] M. A. Farrukh, C.-K. Thong, R. Adnan, M. A. Kamarulzaman, Russ. J. Phys. Chem. A. 86 (2012) 2041-2048.

Google Scholar

[23] C.-C. Chen, C.-S. Lu, Environ. Sci. Technol. 41 (2007) 4389–4396.

Google Scholar

[24] M. A. Farrukh, Kinetic study of electron transfer reactions between some transition metal complexes and investigation of factors influencing the electron transfer processes, PhD thesis, University of Karachi (2003).

Google Scholar

[25] M. A. Farrukh, B.-T. Heng, R. Adnan, Turk. J. Chem. 34 (2010) 537-550.

Google Scholar

[26] Y.-D Wang, C.-L Ma, X.-D Sun ,H.-D Li, Nanotechnology. 13 (2002) 565–569.

Google Scholar