Sun Protective Means: The Characteristics and Action Efficiency

Article Preview

Abstract:

Modern sun protective means (SPM) represent complex compositions of substances which provide effective protection of a person’s skin against sunlight. Organic and inorganic sun protective filters (sunscreens) or combinations of them are used as the active components of SPM. Organic sunscreens absorb ultraviolet radiation due to the presence of chromophores in their structure; while action of inorganic sunscreens is based on physical mechanism of protection, such as dispersion, absorption and reflection of ultraviolet (UV) radiation by inorganic particles. Silicon nanocrystals have attracted increasing attention as a new promising sun protective agent. They possess extremely high extinction coefficient in UV region of the spectrum and at the same time are transparent for visible light. The combination of physical properties related to the quantum size effect of silicon nanoparticles and their biological compatibility allows the development of highly effective sun protective skincare compositions. Efficiency and quality of SPM depend on many factors. The variety of known sunscreens allows finding optimum structures for creation of the most effective sun protective means. The review of the literature presented is devoted to consideration of existing SPM, their characteristics and effective properties. Then a comparative analysis of a totally new sun protective material based on silicon nanocrystals with known, widely used UV protectors is performed.

You might also be interested in these eBooks

Info:

[1] F. Urbach, Ultraviolet radiation and skin cancer in man, Prev. Med. 9 (1980) 227-230.

Google Scholar

[2] M.F. Holick, Vitamin D Deficiency, N. Engl. J. Med. 357 (2007) 266-281.

Google Scholar

[3] J.L. Fox, Ultraviolet radiation and skin cancer, Int. J. Dermatol. 49 (2010) 978-986.

Google Scholar

[4] T.L. Diepgen, M. Fartasch, H. Drexler, J. Schmitt, Occupational skin cancer induced by ultraviolet radiation and its prevention, Br. J. Dermatol. 167, suppl. 2 (2012) 76-84.

DOI: 10.1111/j.1365-2133.2012.11090.x

Google Scholar

[5] B.L. Diffey, What is light? , Photodermatol. Photoimmunol. Photomed. 18 (2002) 68-74.

Google Scholar

[6] A. Green, D. Battistutta, Incidence and determinants of skin cancer in a high risk Australian population, Int. J. Cancer 46 (1990) 356-361.

DOI: 10.1002/ijc.2910460303

Google Scholar

[7] R. Marks, D. Whiteman, Sunburn and melanoma: how strong is the evidence?, Br. Med. J. 308 (1994) 75-76.

DOI: 10.1136/bmj.308.6921.75

Google Scholar

[8] Ch. Young, Solar ultraviolet radiation and skin cancer, Occup. Med. 59 (2009) 82-88.

Google Scholar

[9] U. Leiter, C. Garbe, Epidemiology of Melanoma and Nonmelanoma Skin Cancer - the role of sunlight, Adv. Exper. Med. and Biol. Sunlight, Vitamin D and Skin Cancer 624 (2008) 89-103.

DOI: 10.1007/978-0-387-77574-6_8

Google Scholar

[10] V. Madan, J.T. Lear, R.-M. Szeimies, Non-melanoma skin cancer, The Lancet 375 (2010) 673-685.

DOI: 10.1016/s0140-6736(09)61196-x

Google Scholar

[11] M.F. Gurish, L.K. Roberts, G.G. Krueger, R.A. Daynes, The effect of various sunscreen agents on skin damage and the induction of tumor susceptibility in mice subjected to UV irradiation, J. Invest. Dermatol. 76 (1981) 246-251.

DOI: 10.1111/1523-1747.ep12526084

Google Scholar

[12] B. Kutting, H. Drexler, UV-induced skin cancer at workplace and evidence-based prevention, Intern. Arch. Occup. Environm. Health 83 (2010) 843-854.

DOI: 10.1007/s00420-010-0532-4

Google Scholar

[13] C.J. Vanover, T. Scott, G. Tullo, J.A. D'Orazio, Epadermal Pigmentation, Nucleotide Excision Repair and Risk of Skin Cancer, J. Carcinogene Mutagene. 4 (2011) 1000128, Information on

DOI: 10.4172/2157-2518.1000128

Google Scholar

[14] A. Juzeniene, P. Brekke, A. Dahlback, S. Andersson-Engels, J. Reichrath, K. Moan, M.F. Holick, W.B. Grant, J. Moan, Solar radiation and human health, Rep. Prod. Phys. 74 (2011) 066701

DOI: 10.1088/0034-4885/74/6/066701

Google Scholar

[15] I.A. Leenson. Even or Odd? Entertaining Essays on Chemistry. Chemistry Publ., Moscow. 1987.

Google Scholar

[16] P.A. Morganroth, H.W. Lim, C.T. Burnett, Ultraviolet Radiation and the Skin: An In-Depth Review, Am. J. Lifestyle Med. 5 (2012) 56-85.

Google Scholar

[17] T.L. Diepgen, M. Fartasch, J. Ring, S. Scheewe, D. Staab, R. Szcepanski, T. Werfel, U. Wahn, U. Gieler, Neurodermitsschulung, Der Hautarzt 54(2003) 946-951.

DOI: 10.1007/s00105-003-0613-3

Google Scholar

[18] M.F. Holick, Sunlight, UV-Radiation, Vitamin D and Skin cancer: How much Sunlight Do we need?, Adv. Exp. Med. Biol. 624 (2008) 1-15.

DOI: 10.1007/978-0-387-77574-6_1

Google Scholar

[19] CIE (Commission Internationale d'Eclairage) Research Note, A reference action spectrum for ultraviolet induced in human skin, CIEJ 6 (1987) 17-22.

Google Scholar

[20] F.J. Moloney, S Collins, G.M. Murphy, Sunscreens. Safety, efficacy and appropriate use, Am. J. Clin. Dermatol. 3 (2002) 185-191.

Google Scholar

[21] A.F. Mckinlay, B.L. Diffey, A reference action spectrum for ultraviolet induced erythema in human skin. Human Exposure to Ultraviolet Radiation: Risks and Regulations, Elsevier, Amsterdam, 1987.

Google Scholar

[22] R.B. Setlow, The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. USA. 71 (1974) 3363-3366.

DOI: 10.1073/pnas.71.9.3363

Google Scholar

[23] A.R. Young, Chromophores in human skin, Phys. Med. Biol. 42 (1997) 789

DOI: 10.1088/0031-9155/42/5/004

Google Scholar

[24] B.L. Diffey, Solar ultraviolet radiation effects on biological systems, Phys. Med. Biol. 36 (1991) 299-328.

DOI: 10.1088/0031-9155/36/3/001

Google Scholar

[25] J.W. Stanfield, P.A. Fildt, J.S. Csortan, L. Kromal, Ultraviolet A sunscreen evaluations in normal subjects, J. Am. Acad. Dermatol. 20 (1989) 744-748.

DOI: 10.1016/s0190-9622(89)70084-0

Google Scholar

[26] B.L. Diffey, P.M. Farr, Sunscreen protection against UVB, UVA and blue light: an in vivo and in vitro comparison, Br. J. Dermatol. 124 (1991) 258-263.

DOI: 10.1111/j.1365-2133.1991.tb00570.x

Google Scholar

[27] V.M. Berezovsky, Vitamin Chemistry, Pishchevaya Premyshlennost, Moscow, second edn. 1973.

Google Scholar

[28] S. Liardet, C. Scaletta, R. Panizzon, P. Hohfeld, L. Laurent-Applegate, Protection Against Pyrimidine Dimers, p.53, and 8-hydroxy-2'-Deoxyguanosine Expression in Ultraviolet-Irradiated Human Skin by Sunscreens: Difference Between UVB + UVA and UVB Alone Sunscreens, J. Investigat. Dermatol. 117 (2001) 1437-1441.

DOI: 10.1046/j.0022-202x.2001.01580.x

Google Scholar

[29] K. Nielsen, L. Zhao, J. Stamnes, K. Stamnes, J. Moan, The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes, J. Photochem. Photobiol. B Biol. 82 (2006) 194 –198.

DOI: 10.1016/j.jphotobiol.2005.11.008

Google Scholar

[30] G. Britton, The biochemistry of natural pigments, Cambridge Univ. Press, Cambridge, 1983.

Google Scholar

[31] R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell, Harper's Illustrated Biochemistry, twenty sixth ed., McGraw-Hill, New York, 2003.

Google Scholar

[32] H. Bennett (Ed.) The Chemical Formulary, Chemical Publishing, New York, 1945, Vol. VII, p.64; I.A. Leenson, Sunscreens, Chemistry and Life, No. 4 (2001) 30-34.

Google Scholar

[33] Y. Miyamura, S.G. Coelho, R. Wolber, S.A. Miller, K. Wakamatsu, B.Z. Zmudzka, I. Ito, C. Smuda, T. Passeron, W. Choi, J. Batzer, Y. Yamaguchi, J.Z. Beer, V.J. Hearing, Regulation of human skin pigmentation and responses to ultraviolet radiation, Pigment Cell Research No 1 (2007) 2-13.

DOI: 10.1111/j.1600-0749.2006.00358.x

Google Scholar

[34] L.C. Harbor, D.R. Bickers, Photoprotection, in: L.C. Harbor, D.R. Bickers (Eds.), Photosensitivity Diseases: Principles of Diagnosis and Treatment, WB Saunders Company, Philadelphia, 1981, p.85–103.

Google Scholar

[35] N.K. Kochetkov, E.I. Budovskiĭ (Eds.), Organic chemistry of nucleic acids. Plenum Press, London, New York, 1971, p.72.

Google Scholar

[36] A.V. Borodavkin, E.I. Budovskii, Yu.V. Morozov, et al., Electronic structure, UV absorption spectra, and reactivity of nucleic acid components, Reviews of Science and Technology. Molecular Biology [in Russian], Vol. 14, VINITI, Moscow, 1977.

Google Scholar

[37] N. Turro, Molecular photochemistry,  W.A. Benjamin, New York, 1965.

Google Scholar

[38] J.-S. Taylor, DNA, sunlight and skin cancer, J. Chem. Eduс. 67 (1990) 835-841.

Google Scholar

[39] B.M. Sutherland, J.S. Cimino, N. Delihas, A.G. Shih, R.P. Oliver, Ultraviolet light-induced transformation of human cells to anchorage-independent growth, Cancer Res. 40 (1985) 2409-2411.

Google Scholar

[40] E.P. Serebryakov, Organic photochemistry, in: Chemistry through our eyes. Nauka, Moscow, 1981, pp.190-210.

Google Scholar

[41] J. Koolman, K.H. Röhm, Color Atlas of Biochemistry, Thieme, New York, 1996.

Google Scholar

[42] R.M. Evans, The Steroid and Thyroid Hormone Receptor Superfamily, Science. New Series, 240 (1988) 889-895.

DOI: 10.1126/science.3283939

Google Scholar

[43] X. Wang, P. Traub, Resinless section immunogold electron microscopy of karyocytoskeletal frameworks of eukaryotic cells cultured in vitro: absence of a salt-stable nuclear matrix from mouse plasmacytoma MPC-11 cells, J. Cell. Sci., 98 (1991) 107-122.

DOI: 10.1242/jcs.98.1.107

Google Scholar

[44] C. Antoniou, M.G. Kosmadaki, A.J. Stratigos, A.D. Katsambas, Sunscreens – What'simportant to Know ?, JEADV, 22 (2008) 1110-1119.

DOI: 10.1111/j.1468-3083.2007.02580.x

Google Scholar

[45] L.A. Applegate, C. Scalletta, A. Fourtanier, R. Mascotto, S. Seite, E. Frenk, Expression of DNA damage and stressproteins by UVA radiation of human skin in vivo, J. Dermatol. 7 (1997) 215-219.

Google Scholar

[46] F. Bernerd, C. Vioux, D. Asselineau, Evaluation of the Protective Effect of Sunscreens on In Vitro Reconstructed Human Skin Exposed to UVB or UVA Irradiation, Photochem. Photobiol., 71 (2000) 314-320.

DOI: 10.1562/0031-8655(2000)071<0314:eotpeo>2.0.co;2

Google Scholar

[47] C. Gelis, S. Girard, A. Mavon, M. Delverdier, N. Paillous, P. Vicendo, Assessment of the skin photoprotective capacities of an organo-mineral broad-spectrum sunblock on two ex vivo skin models, Photodermatol. Photoimmunol. Photomad., 19 (2003) 242-253.

DOI: 10.1034/j.1600-0781.2003.00045.x

Google Scholar

[48] R.N. Roelandts, Shedding light on sunscreens, Clin. Exp. Dermatol., 23 (1998) 147-57.

Google Scholar

[49] S. Schauder, I. Ippen, Contact and photocontact sensitivity to sunscreens, Contact Dermatitis., 37 (1997) 221-232.

DOI: 10.1111/j.1600-0536.1997.tb02439.x

Google Scholar

[50] N.J. Lowe, An overview of ultraviolet radiation. Sunscreens and photoinduced dermatosis, Dermatol. Clin., 24 (2006) 9-17.

Google Scholar

[51] N.A. Shaath, The Chemistry of Sunscreens, in: N.J. Lowe, N.A. Shaath, and M.A. Pathak (Eds.), Sunscreens. Development, Evaluation, and Reglatory Aspects, Marcel Dekker, New York, Basel, Hong Kong, 1997, pp.263-282.

Google Scholar

[52] R.L. Buka, Sunscreens and insect repellents, Curr. Opinion in Pediatrics, 16 (2004) 378-384.

DOI: 10.1097/01.mop.0000133082.32384.76

Google Scholar

[53] I.G. Gvozdeva, Sunscreens, Raw materials and Packaging, 3 (2002) 8-10.

Google Scholar

[54] H.H. Jaffe, M. Orchin, Theory and Application of Ultraviolet Spectroscopy. John Wiley & Sons, New York, 1970.

Google Scholar

[55] R. Mоrrison, R. Boyd, Organic Chemistry, Allyn & Bacon, Boston, 1973.

Google Scholar

[56] B.M. Cumpelik, Sunscreens at skin application levels: direct spectrophotometric evaluation, J. Soc. Cosmet. Chem. 31 (1980) 361-366.

Google Scholar

[57] A.I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products, Pergamon Press, Oxford, 1964.

Google Scholar

[58] M.A. Mitchnick, D. Fairhust, S. Pinnell, Microfine zinc oxide (Z-cote) as a photostable UVA/UVB sunblock agent, J. Am. Acad. Dermatol., 40 (1999) 85-90.

DOI: 10.1016/s0190-9622(99)70532-3

Google Scholar

[59] R.M. Sayre, J.C. Dowdy, Sunbathing vs. indoor tanning: a realistic perspective, Photodermatol. Photoimmunol. Photomed., 19 (2003) 105–107.

DOI: 10.1034/j.1600-0781.2003.00028.x

Google Scholar

[60] L.E. Lynd, Titanium, in: Mineral Facts and Problems, USBM Bulletin 675, USGPO, Washington, DC, 1985, p.859–879.

Google Scholar

[61] H.-H. Ko, H.-T. Chen, F.-L. Yen, W.-Ch. Zeng, Ch.-W. Kuo, Preparation of TiO2 nanocrystallite powders coates with 9 mol% ZnO for Cosmetic Applications in sunscreens, Int. J. Mol. Sci., 13 (2012) 1658-1669.

DOI: 10.3390/ijms13021658

Google Scholar

[62] A.P. Popov, J. Lademann, A.V. Priezzhev, R. Myllyla, Reconstruction of stratu corneum profile of porcine ear skin after tape stripping using UV/VIS spectroscopy, Proc SPIE, 6628 (2007) 66281S–1–6. DOI: 10.1117/12.729525; A. Popov, TiO2 nanoparticles as UV protectors in skin. Dissertation, Univ. OULU, Finland, 2008.

DOI: 10.1364/ecbo.2007.6628_70

Google Scholar

[63] Z.A. Lewicka, A.F. Benedetto, D.N. Benoit, W.W. Yu, J.D. Fortner, V.L. Colvin, The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercials sunscreens, J. Nanopart. Res., 13 (2011) 3607-3617.

DOI: 10.1007/s11051-011-0438-4

Google Scholar

[64] K. Shirogane, Y. Kida, S. Ito, Japan Patent 6,284,017 (1987).

Google Scholar

[65] K. Shirogane, Y. Kida, S. Ito, Japan Patent 6,2145,011 (1987).

Google Scholar

[66] C.-C. Lin, W.-J. Lin, Sun Protection Factor Analysis of sunscreens containing Titanium Dioxide Nanoparticles, J. Food and Drug Analysis, 19 (2011) 1-8.

DOI: 10.38212/2224-6614.2181

Google Scholar

[67] Popov A.P., Alteration of skin light-scattering and absorption properties by application of sunscreen nanoparticles: A Monte Carlo study, J. Quant. Spectr. & Radiat. Trans. 112 (2011) 1891–1897.

DOI: 10.1016/j.jqsrt.2011.01.015

Google Scholar

[68] M.W. Anderson, J.P. Hewitt, S.R. Spruce, Broad-Spectrum Physical Sunscreens: Titanium Dioxide and Zinc Oxide, in: Sunscreens. Development, Evaluation, and Regulatory aspects, N.J. Lowe, N.A. Shaath N.A., M.A. Pathak (Eds.), Marcel Dekker, New York, Basel, Hong Kong, 1997, pp.353-354.

Google Scholar

[69] H.E. Brown, Zinc Oxide. Properties and Applications, International Lead Zinc Research Organization, New York, 1976.

Google Scholar

[70] S.R. Pinell, D. Fairhurst, R. Gillies, M.A. Mitchnick, N. Kollias, Microfine zinc oxide is a superior sunscreen ingredient to microfine zinc oxide, Dermatol Surg., 26 (2000) 309-314.

DOI: 10.1046/j.1524-4725.2000.99237.x

Google Scholar

[71] G.P. Dransfield, Inorganic susncreens, Rad. Protect. Dosim., 91 (2000) 271-273.

Google Scholar

[72] H.C. van de Hulst, Light Scattering by Small Particles, Wiley, New York, 1957.

Google Scholar

[73] M. Kerker, The scattering of light and other electromagnetic radiation, Academic Press, New York 1969.

Google Scholar

[74] R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, Knowland Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients, J. FEBS Lett., 418 (1997) 87-90.

DOI: 10.1016/s0014-5793(97)01356-2

Google Scholar

[75] A.P. Popov, A.V. Priezzhev, J. Lademann, R. Myllyla, TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens, J. Phys. D: Appl. Phys., 38 (2005) 2564-2570.

DOI: 10.1088/0022-3727/38/15/006

Google Scholar

[76] R. Gilies, Noninvasive in vivo determination of sunscreen ultraviolet A protection factors using diffuse reflectance spectroscopy, in: Sunscreens. Development, Evaluation, and Regulatory aspects, N.J. Lowe, N.A. Shaath N.A., M.A. Pathak (Eds.), Marcel Dekker, New York, Basel, Hong Kong, 1997, pp.601-610.

Google Scholar

[77] J. Schulz, H. Hohenberg, F. Pflucker, E. Gartner, T. Will, S. Pfeiffer, R. Wepf, V. Wendel, H. Gers-Barlag, K.-P. Wittern, Distribution of sunscreens on skin, Adv. Drug Deliv. Rev. 54, Suppl. 1 (2002) S157-S163.

DOI: 10.1016/s0169-409x(02)00120-5

Google Scholar

[78] N. Sadrieh, A.M. Wokovich, N.V. Gopee, J. Zheng, D. Haines, Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles, Toxicol. Sci., 115 (2010) 156-166.

DOI: 10.1093/toxsci/kfq041

Google Scholar

[79] M. Neylor, C. Kevin, The case for sunscreens: a review of their use in preventing actinic skin damage and neoplasia, Arch. Dermatol., 133 (1997) 1146-1154.

DOI: 10.1001/archderm.1997.03890450096012

Google Scholar

[80] R. Wolf, H. Matz, E. Orion, Lipozencic Sunscreens-the ultimate cosmetic, J. Acta Dermatoveneral. Croat., 11 (2003) 158-162.

Google Scholar

[81] R.M. Lavker, D.A. Veres, C.J. Irwin, K.H. Kaidbey, Qantitative assessment of cumulative damage from repetitive exposures to suberythemogenic doses of UVA in human skin, Photochem. Photobiol., 62 (1995) 348–352.

DOI: 10.1111/j.1751-1097.1995.tb05280.x

Google Scholar

[82] D. Leroy, P. Deschamps, Influence of formulation on sunscreen water resistance, Photodermatol., 3 (1986) 52-53.

Google Scholar

[83] D.R. Sambandan, D. Rathner, http://www.jaad.org/article/S0190-9622(10)00627-4/abstract Sunscreens: An overview and update J. Amer. Acad. Dermatol., 64 (2011) 748-758.

Google Scholar

[84] Food and Drug Administration. Sunscreen drug products for over-the-counter human use. Federal register, Washington (DC), 1999, pp.27666-27693.

Google Scholar

[85] Food and Drug Administration. Sunscreen drug products for over-the-counter human use. Federal Register, Washington (DC), 1994, pp.38206-38269.

Google Scholar

[86] Standardization mandate assigned to CEN concerning methods for testing efficacy of sunscreens products, European Commission, Enterprise and Industry Directorate-General, Consumer goods, Cosmetics and Medical Devices, M/389 EN, Brussels, 12 July 2006.

Google Scholar

[87] P.E. Grimes, I. Hamzavi, H.W. Lim, The Efficacy of Afamelanotide and Narrowband UV-B Phototherapy for Repigmentation of Vitiligo, Arch. Dermatol., 148 (2012) 140-146.

DOI: 10.1001/2013.jamadermatol.386

Google Scholar

[88] A. Reich, M. Hapura, M. Bury, J. Chrzaszcz, A. Starczewska, Application of sunscreen preparations: a need to change the regulations, Photodermatol. Photoimmunol. Photomed., 25 (2009) 242-244.

DOI: 10.1111/j.1600-0781.2009.00450.x

Google Scholar

[89] N. Bech-Thomson, H. Wulf, Sunbather's application of sunscreen is probably inadequate to obtain the sun protection factor assigned to the preparation, Photodermatol. Photoimmunol. Photomed., 9 (1993) 242-244.

Google Scholar

[90] N. Tarras-Wahlberg, G. Stenhagen, O. Larko, A. Rosen, A. Wennberg, O. Wennerstom, Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation, J. Invest. Dermatol., 113 (1999) 547-553.

DOI: 10.1046/j.1523-1747.1999.00721.x

Google Scholar

[91] B.L. Diffey, S.J. Robson, A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum, Soc. Cosmet. Chem., 40 (1989) 127-133.

Google Scholar

[92] J. Lademann, S. Schanzer, U. Jacobi, H. Schaefer, F. Pflucker, H. Driller, J. Beck, M. Meinke, A. Roggan, W. Sterry, Synergy effects between organic and inorganic UV filters in sunscreens, J. Biomed. Optics., 10 (2005) 014008-1-014008-6.

DOI: 10.1117/1.1854112

Google Scholar

[93] COLIPA, Sun protection factor test method, 94 (1994) 289.

Google Scholar

[94] New Standard on sunscreen will help protect New Zealanders. Standards New Zeelands, 22 June (2012)

Google Scholar

[95] G.A. Timofeev, S.E. Muhtarova, D. Gladkov, New sunprotection materials, Raw materials and Packaging, 1 (2005) 57-60.

Google Scholar

[96] K.A. Kelly, G.D. Ewing, S.H. Dromgoole, J.L. Lichtin, A.A. Sakr, In vitro sun protection factor evaluation of sunscreen products, J. Soc. Cosmet. Chem., 44 (1993) 139-151.

Google Scholar

[97] B.L. Diffey, A method for broad spectrum classification of sunscreens, Int. J. Cosm. Sci., 16 (1994) 47-52.

Google Scholar

[98] R.M. Lavker, G.F. Gerberick, D. Veres, C.J. Irwin, K.H. Kaidbey, Cumulative effects from repeated exposures to suberythemal doses of UVB and UVA in human skin, Am. Acad. Dermatol., 32 (1995) 53-62.

DOI: 10.1016/0190-9622(95)90184-1

Google Scholar

[99] N.J. Lowe, D.P. Meyers, J.M. Wieder, D. Luftman, T. Borget, M.D. Lehman, A.W. Johnson, I.R. Scott, Low doses of repetitive ultraviolet A induce morphologic changes in human skin, J. Invest. Dermatol., 105 (1995) 739-743.

DOI: 10.1111/1523-1747.ep12325517

Google Scholar

[100] R. Lavker, K. Kaidbey, The spectral dependence for UVA-induced cumulative damage in human skin, J. Invest. Dermatol., 108 (1997) 17-21.

DOI: 10.1111/1523-1747.ep12285613

Google Scholar

[101] R.M. Lavker, D.A. Veres, C.J. Irwin, K.H. Kaidbey, Quantitative assessment of cumulative damage from repetitive exposures to suberythemogenic doses of UVA in human skin, Photochem. Photobiol., 62 (1995) 348-352.

DOI: 10.1111/j.1751-1097.1995.tb05280.x

Google Scholar

[102] A. Chardon, D. Moyal, C. Hourseau, Persistant pigment darkening as a method for the UVA protection asessment of sunscreens, in: Protection of Skin Against Ultraviolet Radiations, A. Rougier and H. Schaefer (Eds.), John Libbey Eurotext, Paris, 1998, pp.131-136.

Google Scholar

[103] K. Kaidbey, A. Barnes, Determination of UVA protection factors by means of immediate pigment darkening in normal skin, J. Am. Acad. Dermatol., 25 (1991) 262-266.

DOI: 10.1016/0190-9622(91)70193-6

Google Scholar

[104] A. Chardon, I. Crétois, C. Hourseau, Skin color typology and suntanning pathways, Int. J. Cosmet. Sci., 13 (1991) 191-208.

DOI: 10.1111/j.1467-2494.1991.tb00561.x

Google Scholar

[105] C. Routaboul, A. Denis, A. Vinche, Immediate pigment darkening: description, kinetic and biological function, Eur J. Dermatol. 9 (1999) 95-99.

Google Scholar

[106] The Guide to Practical Measurements of UVA/UVB Ratios, in: The Boots Co. PLC, Nottingham, 2004.

Google Scholar

[107] R. Sayre, P. Agin P. A method for the determination of UVA protection for normal skin, J. Am. Acad. Dermatol., 23 (1990) 429-440.

Google Scholar

[108] P. Wolf, M.L. Kripke, Immune aspects of sunscreens, in: Sunscreen Photobiology: Molecular, Cellular and Physiological Aspects, F.P. Gasparro (Ed.), Springer Verlag, Berlin, 1990, pp.99-118.

DOI: 10.1007/978-3-662-10135-3_7

Google Scholar

[109] R. Bestak, R.S.C. Barnetson, M.R. Nearn, G.M. Halliday, Sunscreen Protection of Contact Hypersensitivity Responses from Chronic Solar-Simulated Ultraviolet Irradiation Correlates with the Absorption Spectrum of the Sunscreen, J. Invest. Dermatol., 105 (1995) 345-351.

DOI: 10.1111/1523-1747.ep12320580

Google Scholar

[110] R.G. Molen, H.M.H. Hurks, Efficacy of micronized titanium dioxide-containing compounds in protection against UVB-induced immunosuppression in humans in vivo, Photochem. Photobiol., B: Biology, 44 (1998) 143-150.

DOI: 10.1016/s1011-1344(98)00137-7

Google Scholar

[111] W.G. Wamer, J.J. Yin, R.R. Wei, Oxidative damage to nucleic acids photosensitized by titanium dioxide, Free Radic. Biol. Med., 23 (1997) 851-858.

DOI: 10.1016/s0891-5849(97)00068-3

Google Scholar

[112] K. Hirakawa, M. Mori, M. Yoshida, S. Oikawa, S. Kawanashi, Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide, Free Radic. Res., 38 (2004) 439-447.

DOI: 10.1080/1071576042000206487

Google Scholar

[113] N. Srepone, in: Kirk-Othmer Encyclopedia of Chemical Technology, Wiley-Interscince, New York, 1996, pp.820-837.

Google Scholar

[114] J. Beckman, A.I. Belogorokhov, Sh.L. Guseynov, A.A. Ischenko, P.A. Storozhenko, I.A. Tutorskii, UV-protective cosmetic composition. Russia Patent 2,227,015, Bull. 11, 2004.

Google Scholar

[115] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett., 57 (1990) 1046-1051.

DOI: 10.1063/1.103561

Google Scholar

[116] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem., 90 (1986) 2555-2560.

DOI: 10.1021/j100403a003

Google Scholar

[117] C. Delerue, G. Allan, M. Lannoo, Optical band gap of Si nanoclusters, J. Lumin., 80 (1999) 65-73.

DOI: 10.1016/s0022-2313(98)00071-4

Google Scholar

[118] R.K. Soni, L.F. Fonseca, O. Resto, M. Buzaianu, S.Z. Weisz, Size-dependent optical properties of silicon nanocrystals, J. Lumin., 83-84 (1999) 187-191.

DOI: 10.1016/s0022-2313(99)00096-4

Google Scholar

[119] V.K.M. Ranjan, V.A. Singh, The band gap in silicon nanocrystallites, J. Phys: Condens. Matter., 14 (2002) 6647-6655.

DOI: 10.1088/0953-8984/14/26/305

Google Scholar

[120] S. Öğüt, J. Chelikowsky, S. Louie, Quantum confinement and optical gaps in Si nanocrystals, Phys. Rev. Lett., 79 (1997) 1770–1773.

DOI: 10.1103/physrevlett.79.1770

Google Scholar

[121] T. van Buuren, L.N. Dinh, L.L. Chase, W.J. Sickhaus, L.J. Terminello, Changes in the electronic properties of si nanocrystals as a function of particle size, Phys. Rev. Lett. 80 (1998) 3803–3806.

DOI: 10.1103/physrevlett.80.3803

Google Scholar

[122] K. Sattler, The Energy Gap of Clusters Nanoparticles, and Quantum Dots, in: Nanocrystalline Semiconductor Materials, P.W. Kamat and D. Meisel (Eds.), Elsevier, New York, 1996, pp.62-97.

Google Scholar

[123] I.S. Altman, D. Lee, J.D. Chung, J. Song, M. Choi, Light absorption of silica nanoparticles, Phys. Rev. B., 63 (2001) 161402-1-161402-4.

Google Scholar

[124] S. Knief, W. Niessen, Disorder, defects, and optical absorption in a-Si and a-Si:H, Phys. Rev. B., 59 (1999) 12940-12946.

Google Scholar

[125] A.A. Ischenko, A.A. Sviridova, Sun protective materials. II. Inorganic UV-filters and their compositions with organic protectors, Reports of Institutes of Higher Education. Series: Chemistry and Chemical Technology, 49 (2006) 3-16.

Google Scholar

[126] I.A. Tutorskii, A.I. Belogorokhov, A.A. Ischenko, P.A. Storozhenko, Structure and absorptive properties of nanosilicon, Colloid Journal, 67 (2005) 491-496.

DOI: 10.1007/s10595-005-0123-3

Google Scholar

[127] V.N. Bagratashvili, A.I. Belogorokhov, A.A. Ischenko, P.A. Storozhenko, I.A. Tutorskii, Control the spectral characteristics of ultrafine multiphase systems based on nanocrystalline silicon in the UV wavelength region, Proc. Russian Acad. Sci., 45 (2005) 360-363.

DOI: 10.1007/s10634-005-0069-5

Google Scholar

[128] T. Shimizu-Iwayama, T. Hama, D.E. Hole, Characteristic photoluminescence properties of Si nanocrystals in SiO<sub> 2</sub> fabricated by ion implantation and annealing, Solid-State Electronics, 45 (2001) 1487-1494.

DOI: 10.1016/s0038-1101(00)00261-6

Google Scholar

[129] A.O. Rybaltovskii, V.N. Bagratashvili, A.I. Belogorokhov, V.V. Koltashev, V.G. Plotnichenko, A.P. Popov, A.V. Priezzhev, A.A. Sviridova, K.V. Zaitseva, I.A. Tutorskii, A.A. Ischenko, The spectral features of water-emulsion composite media containing silica nanoparticles, Optics and Spectr., 101 (2006) 624-631.

DOI: 10.1134/s0030400x06100146

Google Scholar

[130] A.P. Popov, M.Y. Kirillin, A.V. Priezzhev, J. Lademann, J. Hast, R. Myllyla, Optical sensing of titanium dioxide nanoparticles within horny layer of human skin and their protecting effect against solar UV radiation, Proc. SPIE, 5702 (2005) 113-122.

DOI: 10.1117/12.590860

Google Scholar

[131] Handbook of optical Constants of Solids, Acad. Press, San Diego, 1998, P. I, pp.561-565; P.II., pp.575-579.

Google Scholar

[132] V.A. Isaev, A.I. Belogorokhov, E.V. Es'kova, A.A. Ischenko, P.A. Storozhenko, I.A. Tutorskii, Cosmetic compound for protection against ultraviolet radiation, Russia Patent 2,136,008 (2004).

Google Scholar

[133] M.A. Pathak, Sunscreens: Topical and systematic approaches for protection of human skin against harmful effects of solar radiation, J. Am. Acad. Dermatol., 7 (1982) 285-312.

DOI: 10.1016/s0190-9622(82)70117-3

Google Scholar

[134] M.A. Pathak, T.B. Fitzpatrick, F.J. Greiter, E.W. Kraus, Principles of photoprotection in sunburn and suntanning, and topical and systemic photoprotection in health and diseases, J. Dermatol. Surg. Oncol., 11 (1985) 575-579.

DOI: 10.1111/j.1524-4725.1985.tb01897.x

Google Scholar

[135] S.K. Pathak, N.J. Mason, Our shrinking ozone layer, Resonance, 7 (2002) 71-80.

Google Scholar

[136] P.E. Hockberger, A history of ultraviolet photobiology for humans, animals and microorganisms, Photochem. Photobiol., 76 (2002) 561-579.

DOI: 10.1562/0031-8655(2002)076<0561:ahoupf>2.0.co;2

Google Scholar

[137] J. Longstreth, F.R. de Gruijl, M.L. Kripke, S. Abseck, F. Arnold, H.I. Slaper, G. Velders, Y. Takizawa, J.C. van der Leun, Health risks, J. Photochem. Photobiol. B 46 (1998) 20-39.

DOI: 10.1016/s1011-1344(98)00183-3

Google Scholar

[138] E.C. Friedberg, DNA damage and repair, Nature, 421 (2003) 436-440.

Google Scholar

[139] R.C. Smith, B.B. Prezelin, K.S. Baker, R.R. Bidigare, N.P. Boucher, T. Coley, D. Karentz, S. MacIntyre, H.A. Matlick, D. Menzies, Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters, Science, 255 (1992) 952-959.

DOI: 10.1126/science.1546292

Google Scholar

[140] J.C. van der Leun, F.R. de Gruijl, UV-B radiation and ozone depletion: effects on humans, animals, plants, microorganisms, and materials, in: Influences of ozone depletion on human and animal health, M. Tevini (Ed.), Lewis Publishers, Ann Arbor, 1993, pp.95-123.

DOI: 10.1007/978-1-4899-2406-3_4

Google Scholar

[141] R. Wolf, D. Wolf , P. Morganti, V. Ruocco, Sunscreens, Clin. Dermatol., 19 (2001) 452-459.

DOI: 10.1016/s0738-081x(01)00190-0

Google Scholar

[142] G.J. Nohynek, J. Lademann, C. Ribaud, M.S. Roberts, Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety, Crit. Rev. Toxicol., 37 (2007) 251-277.

DOI: 10.1080/10408440601177780

Google Scholar

[143] L. Durand, N. Habran, V. Henschel, K. Amighi, In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations of UV filters, Int. J. Cosmet. Sci., 31 (2009) 279-292.

DOI: 10.1111/j.1468-2494.2009.00498.x

Google Scholar

[144] E. Gontier, M.-D. Ynsa, T. Biro, J. Hunyadi, B. Kiss, K. Gaspar, T. Pinheiro, J.-N. Silva, P. Filipe, J. Stachura, Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study, Nanotoxicology, 2 (2009) 218-231.

DOI: 10.1080/17435390802538508

Google Scholar

[145] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Science, 311 (2006) 622-627.

DOI: 10.1126/science.1114397

Google Scholar

[146] M.D. Newman, M. Stotland, J.I. Ellis, The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens, J. Am. Acad. Dermatol., 61 (2009) 685-692.

DOI: 10.1016/j.jaad.2009.02.051

Google Scholar

[147] E. Oberdorster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Perspect., 112 (2004) 1058-1062.

DOI: 10.1289/ehp.7021

Google Scholar

[148] G. Oberdorster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy, Part. Fibre Toxicol., 2 (2005) 8:

DOI: 10.1186/1743-8977-2-8

Google Scholar

[149] G. Oberdorster, E. Oberdorster, J. Oberdorster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113 (2005) 823-839.

DOI: 10.1289/ehp.7339

Google Scholar

[150] B. Baroli, M.G. Ennas, F. Loffredo, M. Isola, R. Pinna, M.A. Lopez-Quintela, Penetration of metallic nanoparticles in human full-thickness skin, J. Invest. Dermatol., 127 (2007) 1701-1712.

DOI: 10.1038/sj.jid.5700733

Google Scholar

[151] F. Menzel, T. Reinert, J. Vogt, T. Butz, Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION, Nucl. Instrum. Methods Phys. Res. Sect. B, 219-220 (2004) 82-86.

DOI: 10.1016/j.nimb.2004.01.032

Google Scholar

[152] J. Wu, W. Liu, C. Xue, S. Zhou, F. Lan, L. Bi, H. Xu, X. Yang, F.-D. Zeng, Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure, Toxicol. Lett., 191 (2009) 1-8.

DOI: 10.1016/j.toxlet.2009.05.020

Google Scholar

[153] C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases, 2 (2007) MR17-MR71.

DOI: 10.1116/1.2815690

Google Scholar

[154] A.A. Ischenko, G.V. Fetisov, L. A. Aslanov, Nanosilicon: properties, synthesis, applications, methods of analysis and control. M.: FIZMATLIT, 2011.

Google Scholar

[155] R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, J. Knowland, Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients, FEBS Lett., 418 (1997) 87-90.

DOI: 10.1016/s0014-5793(97)01356-2

Google Scholar

[156] K. Donaldson, P.H. Beswick, P.S Gilmour, Free radical activity associated with the surface of particles: a unifying factor in determining biological activity?, Toxicol. Lett., 88 (1996) 293-298.

DOI: 10.1016/0378-4274(96)03752-6

Google Scholar

[157] S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. In Vitro, 19 (2005) 975-983.

DOI: 10.1016/j.tiv.2005.06.034

Google Scholar

[158] J. Luo, Toxicity and bioaccumulation of nanomaterial in aquatic species, J. US SJWP, 2 (2007) 1-16.

Google Scholar

[159] S. Zhu, E. Oberdorster, M.L. Haasch, Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow, Mar. Environ. Res. 62 (2006) S5-S9.

DOI: 10.1016/j.marenvres.2006.04.059

Google Scholar

[160] L. Xia, S.C. Lenaghan, M. Zhang, Zh. Zhang, Q. Li, Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection, J. Nanobiotechnology, 8 (2010) 12 : http://www.jnanobiotechnology.com/content/8/1/12

DOI: 10.1186/1477-3155-8-12

Google Scholar