[1]
A. Chatterjee, B. L. Deopura, High Modulus/Tenacity Filaments from Blends of Different Molecular Weights of Polypropylene, Journal of Applied Polymer Science. 96(4) (2005) 1021.
DOI: 10.1002/app.21313
Google Scholar
[2]
A. K-T Lau, D. Hui, The revolutionary creation of new advanced materials-carbon nanotube composites, Composites B. 33 (2002) 263-77.
DOI: 10.1016/s1359-8368(02)00012-4
Google Scholar
[3]
E. T. Thostenson, Z. Ren, T-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos Sci Technol. 61 (2001) 1899-(1912).
DOI: 10.1016/s0266-3538(01)00094-x
Google Scholar
[4]
A. Chatterjee, B. L. Deopura, Carbon nanotubes and nanofibres—an overview, Fibres Polym. 3(4) (2002) 134-139.
Google Scholar
[5]
S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, D. A. Schiraldi. Fibres from polypropylene/nano carbon fibre composites, Polymer. 43 (2002) 1701-1703.
DOI: 10.1016/s0032-3861(01)00744-3
Google Scholar
[6]
S. A. Gordeyev, J. A. Ferreira, C. A. Bernardo, I. M. Ward, A promising conductive material: highly oriented polypropylene filled with short vapour-grown carbon fibres, Mater Lett. 51 (2001) 32-36.
DOI: 10.1016/s0167-577x(01)00260-9
Google Scholar
[7]
R. D. Patton, C. U. Pittman Jr, L. Wang, J. R. Hill, Vapour grown fiber composites with epoxy and poly (phenylene sulfide) matrices, Composites, Part A. 30 (1999) 1081-1091.
DOI: 10.1016/s1359-835x(99)00018-4
Google Scholar
[8]
K. Lozano, E. V. Barrera, Nanofiber-reinforced thermoplastic composites.I. Thermoanalytical and mechanical analyses, J Appl Polym Sci. 79 (2001) 125-133.
DOI: 10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d
Google Scholar
[9]
K. Lozano, B. Rios, E. V. Barrera, A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduction properties, J Appl Polym Sci. 80 (2001) 1162-1172.
DOI: 10.1002/app.1200
Google Scholar
[10]
J. Sandler, P. Werner, S. P. Schaffer Milo, V. Demchuk, V. Altsta¨dt, A. H. Windle, Carbon-nanofibre-reinforced poly (ether ether ketone) composites, Composites A. 33 (2002) 1033-1039.
DOI: 10.1016/s1359-835x(02)00084-2
Google Scholar
[11]
R. J. Kruiger, M. K. Alam, D. P. Anderson, R. L. Jacobsen, Processing and characterisation of aligned vapour grown carbon fiber reinforced polypropylene, Composites A. 33 (2002) 53-62.
DOI: 10.1016/s1359-835x(01)00070-7
Google Scholar
[12]
A. Peterlin, Molecular model of drawing polyethylene and polypropylene, J Mater Sci. 6 (1971) 490-508.
DOI: 10.1007/bf00550305
Google Scholar
[13]
T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas, Macromol Rapid Commun 23 (2002) 761.
DOI: 10.1002/1521-3927(20020901)23:13<761::aid-marc761>3.0.co;2-k
Google Scholar
[14]
G. Farrow, D. Preston, Measurement of crystallinity in drawn polyethylene terephthalate fibres by X-ray diffraction, Br J Appl Phys. 11 (1960) 353-358.
DOI: 10.1088/0508-3443/11/8/310
Google Scholar
[15]
A. Chatterjee, B. L. Deopura, Crystallisation behaviour of PP/Carbon nanofibre composite filament, Fibres and Polymers. 4 (2003) 102.
Google Scholar
[16]
H. E. Kissinger, J. Res. Natl. Stand., 57, 217 (1956).
Google Scholar
[17]
A. Dobreva and I. Gutzow, Activity of substrates in the catalyzed nucleation of glass-forming melts I. Experimental evidence, J. Non-crystalline Solids, 162(1) (1993) 1-2.
DOI: 10.1016/0022-3093(93)90737-i
Google Scholar
[18]
A. Dobreva and I. Gutzow, Activity of substrates in the catalyzed nucleation of glass-forming melts II. Experimental evidence, J. Non-crystalline Solids, 162(1) (1993) 13-25.
DOI: 10.1016/0022-3093(93)90737-i
Google Scholar
[19]
S. J. Mahajan, K. Bhaumik, and B. L. Deopura, Fibers spun from blends of different molecular weights of polypropylene, J. Appl. Polym. Sci. 43(1) (1991) 49-56.
DOI: 10.1002/app.1991.070430107
Google Scholar
[20]
L. Jin, C. Bower, O. Zhou. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett. 73(9) (1998) 1197-1199.
DOI: 10.1063/1.122125
Google Scholar