Vapour Grown Carbon Fibre Reinforced Poly(Propylene) Filament

Article Preview

Abstract:

Polypropylene filament incorporating carbon nanofibre has been spun using conventional fibre processing route. Nanocomposite filament with very high dynamic modulus of 29 GPa and tenacity of 770 MPa could be obtained at 1% loading of nanofibres. The Nanocomposite filament exhibits higher thermal stability. Influence of carbon nanofibres on the morphology, mechanical and thermal properties of the nanocomposite filament have been studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-164

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Chatterjee, B. L. Deopura, High Modulus/Tenacity Filaments from Blends of Different Molecular Weights of Polypropylene, Journal of Applied Polymer Science. 96(4) (2005) 1021.

DOI: 10.1002/app.21313

Google Scholar

[2] A. K-T Lau, D. Hui, The revolutionary creation of new advanced materials-carbon nanotube composites, Composites B. 33 (2002) 263-77.

DOI: 10.1016/s1359-8368(02)00012-4

Google Scholar

[3] E. T. Thostenson, Z. Ren, T-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos Sci Technol. 61 (2001) 1899-(1912).

DOI: 10.1016/s0266-3538(01)00094-x

Google Scholar

[4] A. Chatterjee, B. L. Deopura, Carbon nanotubes and nanofibres—an overview, Fibres Polym. 3(4) (2002) 134-139.

Google Scholar

[5] S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, D. A. Schiraldi. Fibres from polypropylene/nano carbon fibre composites, Polymer. 43 (2002) 1701-1703.

DOI: 10.1016/s0032-3861(01)00744-3

Google Scholar

[6] S. A. Gordeyev, J. A. Ferreira, C. A. Bernardo, I. M. Ward, A promising conductive material: highly oriented polypropylene filled with short vapour-grown carbon fibres, Mater Lett. 51 (2001) 32-36.

DOI: 10.1016/s0167-577x(01)00260-9

Google Scholar

[7] R. D. Patton, C. U. Pittman Jr, L. Wang, J. R. Hill, Vapour grown fiber composites with epoxy and poly (phenylene sulfide) matrices, Composites, Part A. 30 (1999) 1081-1091.

DOI: 10.1016/s1359-835x(99)00018-4

Google Scholar

[8] K. Lozano, E. V. Barrera, Nanofiber-reinforced thermoplastic composites.I. Thermoanalytical and mechanical analyses, J Appl Polym Sci. 79 (2001) 125-133.

DOI: 10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d

Google Scholar

[9] K. Lozano, B. Rios, E. V. Barrera, A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduction properties, J Appl Polym Sci. 80 (2001) 1162-1172.

DOI: 10.1002/app.1200

Google Scholar

[10] J. Sandler, P. Werner, S. P. Schaffer Milo, V. Demchuk, V. Altsta¨dt, A. H. Windle, Carbon-nanofibre-reinforced poly (ether ether ketone) composites, Composites A. 33 (2002) 1033-1039.

DOI: 10.1016/s1359-835x(02)00084-2

Google Scholar

[11] R. J. Kruiger, M. K. Alam, D. P. Anderson, R. L. Jacobsen, Processing and characterisation of aligned vapour grown carbon fiber reinforced polypropylene, Composites A. 33 (2002) 53-62.

DOI: 10.1016/s1359-835x(01)00070-7

Google Scholar

[12] A. Peterlin, Molecular model of drawing polyethylene and polypropylene, J Mater Sci. 6 (1971) 490-508.

DOI: 10.1007/bf00550305

Google Scholar

[13] T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas, Macromol Rapid Commun 23 (2002) 761.

DOI: 10.1002/1521-3927(20020901)23:13<761::aid-marc761>3.0.co;2-k

Google Scholar

[14] G. Farrow, D. Preston, Measurement of crystallinity in drawn polyethylene terephthalate fibres by X-ray diffraction, Br J Appl Phys. 11 (1960) 353-358.

DOI: 10.1088/0508-3443/11/8/310

Google Scholar

[15] A. Chatterjee, B. L. Deopura, Crystallisation behaviour of PP/Carbon nanofibre composite filament, Fibres and Polymers. 4 (2003) 102.

Google Scholar

[16] H. E. Kissinger, J. Res. Natl. Stand., 57, 217 (1956).

Google Scholar

[17] A. Dobreva and I. Gutzow, Activity of substrates in the catalyzed nucleation of glass-forming melts I. Experimental evidence, J. Non-crystalline Solids, 162(1) (1993) 1-2.

DOI: 10.1016/0022-3093(93)90737-i

Google Scholar

[18] A. Dobreva and I. Gutzow, Activity of substrates in the catalyzed nucleation of glass-forming melts II. Experimental evidence, J. Non-crystalline Solids, 162(1) (1993) 13-25.

DOI: 10.1016/0022-3093(93)90737-i

Google Scholar

[19] S. J. Mahajan, K. Bhaumik, and B. L. Deopura, Fibers spun from blends of different molecular weights of polypropylene, J. Appl. Polym. Sci. 43(1) (1991) 49-56.

DOI: 10.1002/app.1991.070430107

Google Scholar

[20] L. Jin, C. Bower, O. Zhou. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett. 73(9) (1998) 1197-1199.

DOI: 10.1063/1.122125

Google Scholar