[1]
S. C. Singhal and K. Kendall (editors), High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Oxford, 2003.
Google Scholar
[2]
L. Navadol, W. Wiyaratan, W. Kiatkittipong, Review of solid oxide fuel cell technology, Engineering Journal, 3 Issue1 (Jan. 2009).
Google Scholar
[3]
J. Larminie and D. Andrew, Fuel Cell Systems Explained, John Wiley & Sons Ltd, 2003.
Google Scholar
[4]
H. Mahcene, H. Ben Moussa, H. Bouguetaia, B. Bouchekima and D. Bechki, Losses effect on solid oxide fuel cell stack performance, Fuel Cells Journal, (2006).
DOI: 10.1615/ichmt.2008.cht.1400
Google Scholar
[5]
S. McIntosh and R. J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chem. Rev. 104 (2004) 4845-4865.
DOI: 10.1021/cr020725g
Google Scholar
[6]
K. Eguchi, S. C. Singhal, H. Yokokawa, and J. Mizusaki (editors), Solid oxide fuel cells 10 (SOFC-X) ECS, Pennington, 7, No. 1 (2007).
Google Scholar
[7]
N. P. Brandon, Materials engineering for solid oxide fuel cell technology, Materials Science Forum Trans Tech Publications, Switzerland 539-543 (2007) 20-27.
DOI: 10.4028/www.scientific.net/msf.539-543.20
Google Scholar
[8]
S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135, (2000) 305-313.
DOI: 10.1016/s0167-2738(00)00452-5
Google Scholar
[9]
L. Yixin, S. Laura, L. Peiwen, Numerical simulation of heat transfer and fluid flow of a flat-tube high power density solid oxide fuel cell, Journal of Fuel Cell Science and Technology 2 (2005) 65-69 .
DOI: 10.1115/1.1843120
Google Scholar
[10]
J. Yuan, G. Yang, M. Addersson and B. Sundén, Analysis of chemical reacting heat transfer in SOFCs, 5th European Thermal-Sciences Conference, The Netherlands, (2008).
Google Scholar
[11]
A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, Advanced anodes for high-temperature fuel cells, Nature Materials 3, No. 1, (2004) 17-27.
DOI: 10.1038/nmat1040
Google Scholar
[12]
A. Bieberle, The Electrochemistry of Solid Oxide Fuel Cell Anodes: Experiments, Modeling, and Simulations, Thesis for PhD in Technical Sciences, Swiss Federal Institute Tech., ZÜRICH.
Google Scholar
[13]
M. Lo Faro, D. La Rosa, V. Antonucci and A. S. Arico, Intermediate temperature solid oxide fuel cell electrolytes, Journal of the Indian Institute of Science 89 (2009).
DOI: 10.1002/chin.201137207
Google Scholar
[14]
S. C. Singhal, Science and technology of solid oxide fuel cells, Materials Research Bulletin 25 (2000) 16-21.
Google Scholar
[15]
Y. Tanaka, A. Momma, K. Takano, T. Kato, Performance evaluation of anode-supported planar SOFC with precisely-simulated reformate gases, IOP conf. Series: Materials Science and Engineering 18 (2011) 132008.
DOI: 10.1088/1757-899x/18/13/132008
Google Scholar
[16]
Y. Hao, Numerical study of heterogeneous reactions in an SOFC anode with oxygen addition, Journal of the Electrochemical Society, 155 (7) (2008) B666-B674.
DOI: 10.1149/1.2907763
Google Scholar
[17]
J. H. Myuing, Performance improvement of oxide catalyst-doped anode-supported SOFCs for methane fuel, Electrochemical and Solid-State Letters, 13(4) (2010) B43-B45.
DOI: 10.1149/1.3302459
Google Scholar
[18]
Y. Hao, Numerical modeling of single-chamber SOFCs with hydrocarbon fuels, Journal of The Electrochemical Society, 154 (2) (2007) B207-B217.
DOI: 10.1149/1.2404895
Google Scholar
[19]
Y. Hag Koh, J. Jae Sun, W. Young Choi, H. Ee Kim, Design and fabrication of three-dimensional solid oxide fuel cells, Journal of Power Sources 161 (2006) 1023–1029.
DOI: 10.1016/j.jpowsour.2006.05.043
Google Scholar
[20]
Li Zhou, Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions, Electrochemica Acta 53 (2008) 5195–5198.
DOI: 10.1016/j.electacta.2008.02.032
Google Scholar
[21]
K. Chen, Fabrication and performance of anode-supported YSZ films by slurry spin coating, Solid State Ionics 177 (2007) 3455–3460.
DOI: 10.1016/j.ssi.2006.10.003
Google Scholar
[22]
D. Dong, J. Gao, X. Liu, G. Meng, Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting, Journal of Power Sources 165 (2007) 217–223.
DOI: 10.1016/j.jpowsour.2006.10.098
Google Scholar
[23]
T. X. Ho, P. Kosinski, A. C. Hoffmann, A. Vik, Numerical analysis of a planar anode-supported SOFC with composite Electrodes, Int. J. Hydrogen Energy 34 (2009).
DOI: 10.1016/j.ijhydene.2009.02.016
Google Scholar
[24]
Tanaka, Performance evaluation of anode-supported planar SOFC with precisely-simulated reformate gases, IOP conf. Series: Materials Science and Engineering 18 (2011) 132008.
DOI: 10.1088/1757-899x/18/13/132008
Google Scholar
[25]
P. Chinda, Micro–scale modeling of an anode–supported planar solid oxide fuel cell, Fuel Cells 11 (2011) 184-199.
DOI: 10.1002/fuce.201000121
Google Scholar
[26]
J. Yuan, Simulation and analysis of multi-scale transport phenomena and catalytic reactions in SOFC anodes, Chemical Product and Process Modeling 5 Iss. 1, Article 12.
DOI: 10.2202/1934-2659.1450
Google Scholar
[27]
P. W. Li, M. K. Chyu, Simulation of the chemical/ electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack, Journal of Power Sources 124 (2003) 487-498.
DOI: 10.1016/j.jpowsour.2003.06.001
Google Scholar
[28]
M. M Hussain., Multi-Component and multi-dimensional mathematical modeling of solid oxide fuel cells, PhD thesis, (2008) Waterloo, Ontario, Canada.
Google Scholar
[29]
F. Calise, M. Dentice d'Accadia, G. Restuccia, A detailed one dimensional finite-volume simulation model of a tubular SOFC and a pre-reformer, Int. J. of Thermodynamics 10 (No. 3) ( Sept. 2007) 87-96,.
Google Scholar
[30]
D. Larrain, J. Van herle, D. Favrat, Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk, Journal of Power Sources 161 (2006) 392–403.
DOI: 10.1016/j.jpowsour.2006.04.151
Google Scholar
[31]
B. Sundén, Modeling of heat and mass transfer and other transport phenomena in fuel cells, Frontiers in Heat and Mass Transfer (FHMT), 1, 013008 (2010).
DOI: 10.5098/hmt.v1.1.3008
Google Scholar
[32]
L. Yixin, S. Laura, L. Peiwen, Numerical Simulation of Heat Transfer and Fluid Flow of a Flat-Tube High Power Density Solid Oxide Fuel Cell, Journal of Fuel Cell Science and Technology 2 (2005) 65-69.
DOI: 10.1115/1.1843120
Google Scholar
[33]
S. C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications, Solid State Ionics 152-153, (2002) 405-410.
DOI: 10.1016/s0167-2738(02)00349-1
Google Scholar
[34]
E. Riensche, E. Achenbach, D. Froning, M. R. Haines, W. K. Heidug, A, Clean combined-cycle SOFC power plant-cell modelling and process analysis Journal of Power Sources, 86 (2000) 404-410.
DOI: 10.1016/s0378-7753(99)00490-5
Google Scholar
[35]
K. Oulmi, H. Ben moussa, D. Haddad, Electrochemical energy conversion and storage (fuel cells), the 56th International society of electrochemistry, Bexco, Busan, Korea Sept 25–30 (2005).
Google Scholar
[36]
S. Kakaç, A. Pramuanjaroenkij, X. Yang Zhou, A review of numerical of solid oxide fuel cells, International Journal of Hydrogen Energy, 18 (2006) 1-26.
Google Scholar
[37]
SOFC mathematical model for systems simulations. Part one: from a micro-detailed to macro-blackbox model, International Journal of Hydrogen Energy, 30 (2005) 181-187.
DOI: 10.1016/j.ijhydene.2004.04.008
Google Scholar
[38]
M. Andersson, J. Yuan, B. Sundén, Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells, Applied Energy 87 (2010) 1461–1476.
DOI: 10.1016/j.apenergy.2009.11.013
Google Scholar
[39]
M. Andersson, H. Paradis, J. Yuan, B. Sundén, Modeling analysis of different renewable fuels in an anode supported SOFC, Journal of Fuel Cell Science and Technology 8 (2011) 031013-1.
DOI: 10.1115/1.4002618
Google Scholar
[40]
S. R. Pakalapati, A new reduced order model for solid oxide fuel cells, PhD thesis, Dept. Mechanical & Aerospace Engineering, West Virginia University (2006).
Google Scholar