[1]
K. Mori, H. Yamashita, M. Anpo, Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts, RSC Adv., 2 (2012) 3165-3172.
DOI: 10.1039/c2ra01332k
Google Scholar
[2]
Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond, Article in press as: Chem. Rev. (2012)
DOI: 10.1016/j.ccr.2012.04.018
Google Scholar
[3]
K. Hashimoto, H. Irie, Akira Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, AAPPS Bulletin December, 17(6) (2007) 12-28.
Google Scholar
[4]
U.G. Akpan, B.H. Hameed, The advancements in sol–gel method of doped-TiO2 photocatalysts, Applied Catalysis A: General 375 (2010) 1-11.
DOI: 10.1016/j.apcata.2009.12.023
Google Scholar
[5]
C.-C. Yang, Y.-H. Yu, B. van der Linden, J.C.S. Wu, G. Mul, Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction?, J. Am. Chem. Soc., 132 (2010) 8398-8406.
DOI: 10.1021/ja101318k
Google Scholar
[6]
Slamet, H. W. Nasution, E. Purnama, K. Riyani, J. Gunlazuardi, Effect of Copper Species in a Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-doped Titania Catalysts, World Applied Sciences Journal 6 (1) (2009) 112-122.
DOI: 10.1016/j.catcom.2005.01.011
Google Scholar
[7]
V.P. Indrakanti, J.D. Kubickib, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2 (2009) 745-758.
DOI: 10.1039/b822176f
Google Scholar
[8]
G. Palmisano, V. Augugliaro, M. Pagliarob, L. Palmisano, Photocatalysis: a promising route for 21st century organic chemistry, Chem. Commun., (2007) 3425-3437.
DOI: 10.1039/b700395c
Google Scholar
[9]
P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 45 (8) (2006) 2558-2568.
DOI: 10.1021/ie0505763
Google Scholar
[10]
O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2) (2004) 33-177.
DOI: 10.1016/j.progsolidstchem.2004.08.001
Google Scholar
[11]
Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3- 4) (2000) 543-556.
DOI: 10.2138/am-2000-0416
Google Scholar
[12]
U. Diebold, The surface science of titanium dioxide. Surface Science Reports, 2003, 48(5-8) (2003) 53-229.
DOI: 10.1016/s0167-5729(02)00100-0
Google Scholar
[13]
X.-Q.Gong, A. Selloni, M. Batzill, U. Diebold, Steps on anatase TiO2(101). Nature Materials 5(8) (2006) 665-670.
DOI: 10.1038/nmat1695
Google Scholar
[14]
X. Q.Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, Small au and pt clusters at the anatase TiO2(101) surface: Behavior at terraces, steps, and surface oxygen vacancies. Journal Of The American Chemical Society, 130 (2008) 370-381.
DOI: 10.1021/ja0773148
Google Scholar
[15]
U. Diebold, N. Ruzycki, G.S. Herman, A. Selloni, One step towards bridging the materials gap: surface studies of TiO2 anatase. Catalysis Today, 85 (2003) 93-100.
DOI: 10.1016/s0920-5861(03)00378-x
Google Scholar
[16]
N. Ruzycki, G.S. Herman, L.A. Boatner, U. Diebold, Scanning tunneling microscopy study of the anatase (100) surface. Surface Science, 529 (2003) L239-L244.
DOI: 10.1016/s0039-6028(03)00117-1
Google Scholar
[17]
M. Lazzeri, A. Selloni, Stress-driven reconstruction of an oxide surface: The anatase TiO2(001)-(1x4) surface. Phys. Rev. Lett., 87(26) (2001) 266105.
Google Scholar
[18]
Y. Liang, S.P. Gan, S.A. Chambers, E.I. Altman, Surface structure of anatase TiO2(001): Reconstruction, atomic steps, and domains. Physical Review B, 63(23 (2001) 235402(7).
Google Scholar
[19]
W. Gopel, G. Rocker, R. Feierabend, Intrinsic defects of titanium dioxide(110): Interaction with chemisorbed oxygen, hydrogen, carbon monoxide, and carbon dioxide. Physical Review B: Condensed Matter and Materials Physics, 28(6) (1983) 3427-38.
Google Scholar
[20]
M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, Nature, 275 (1978) 115-116.
DOI: 10.1038/275115a0
Google Scholar
[21]
T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698) (1979) 637-638.
DOI: 10.1038/277637a0
Google Scholar
[22]
E. Fujita, Photochemical carbon dioxide reduction with metal complexes. Coordination Chemistry Reviews, 186 (1999) 373-384.
DOI: 10.1016/s0010-8545(99)00023-5
Google Scholar
[23]
M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S.G. Zhang, Y. Ichihashi, D.R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 44(1-4) (1998) 327-332.
DOI: 10.1016/s0920-5861(98)00206-5
Google Scholar
[24]
W. Lin, H. Frei, Photoactivation of Ti centers in mesoporous silicate sieve under visible and UV light. Studies in Surface Science and Catalysis, (Carbon Dioxide Utilization for Global Sustainability), 153 (2004) 283-288.
DOI: 10.1016/s0167-2991(04)80265-9
Google Scholar
[25]
W.Y. Lin, H.X. Han, H. Frei, CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J. Phy. Chem. B 108, (47) (2004) 18269-18273.
DOI: 10.1021/jp040345u
Google Scholar
[26]
M. Anpo, H. Yamashita, Photocatalytic Reductions - Photocatalytic Reduction of Carbon Dioxide with Water and Hydrogenation of Unsaturated Hydrocarbons with Water, in: Hetergeneous Photocatalysis, M. Schiavello, (Ed.), John Wiley & Sons: Chichester, UK, 1997, p.136.
Google Scholar
[27]
H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45(1-4) (1998) 221.
DOI: 10.1016/s0920-5861(98)00219-3
Google Scholar
[28]
K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic Reduction of CO2 with H2O on Ti-Beta Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties. J. Phys. Chem. B, 105(35) (2001) 8350-8355.
DOI: 10.1021/jp010885g
Google Scholar
[29]
K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts. Catalysis Letters, 80(3) (2002) 111-114.
DOI: 10.1016/s0920-5861(02)00027-5
Google Scholar
[30]
H. Yamashita, K. Ikeue, T. Takewaki, M. Anpo, In situ XAFS Studies on the Effects of the Hydrophobic–Hydrophilic Properties of Ti-Beta Zeolites in the Photocatalytic Reduction of CO2 with H2O. Topics in Catalysis, 18(1) (2002) 95-100.
DOI: 10.1023/a:1013853618581
Google Scholar
[31]
E.A. Wovchko, J.T.Jr. Yates, Photochemical Activation of CO2 on RhI(CO)2/Al2O3-CO2 Dissociation and Oxygen Atom Exchange. Journal of the American Chemical Society, 120(30) (1998) 7544-7550.
DOI: 10.1021/ja9804114
Google Scholar
[32]
C. H. Hamann, P. Schmode, Electric current from the direct conversion of low molecular weight C, H, O-compounds, J. Power Sources, 1(2) (196) 141-157.
DOI: 10.1016/0378-7753(76)80017-1
Google Scholar
[33]
T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-638.
DOI: 10.1038/277637a0
Google Scholar
[34]
K.R. Thampi, J. Kiwi, M. Gratzel, Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure, Nature, 327 (1987) 506-508.
DOI: 10.1038/327506a0
Google Scholar
[35]
K. Hirano, K. Inoue, T. Yatsu, Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder, J. Photochem. Photobiology, A, 64 (1992) 255-258.
DOI: 10.1016/1010-6030(92)85112-8
Google Scholar
[36]
I.H. Tseng, J.C.-S. Wu, Chemical states of metal-loaded titania in the photoreduction of CO2, Catal. Today, 97 (2004) 113-119.
DOI: 10.1016/j.cattod.2004.03.063
Google Scholar
[37]
H. Yamashita, A. Shiga, S. Kawasaki, Y. Ichihashi, S. Ehara, M. Anpo, Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts, Energy Convers. Manage., 36 (1995) 617-620.
DOI: 10.1016/0196-8904(95)00081-n
Google Scholar
[38]
H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves, Catal. Today, 45 (1998) 221-227.
DOI: 10.1016/s0920-5861(98)00219-3
Google Scholar
[39]
J.S. Hwang, J.S. Chang, S.E. Park, K. Ikeue, M. Anpo, Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts, Top. Catal., 2005, 35, 311-319.
DOI: 10.1007/s11244-005-3839-8
Google Scholar
[40]
I.H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal., B, 37 (2002) 37-48.
DOI: 10.1016/s0926-3373(01)00322-8
Google Scholar
[41]
I.H. Tseng, J.C.S. Wu, H.Y. Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal., 221 (2004) 432-440.
DOI: 10.1016/j.jcat.2003.09.002
Google Scholar
[42]
P. Pathak, M.J. Meziani, L. Castillo, Y.P. Sun, Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction, Green Chem., 7 (2005) 667-670.
DOI: 10.1039/b507103h
Google Scholar
[43]
J.C.S. Wu, H.M. Lin, C.L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor, Appl. Catal., A, 296 (2005) 194-200.
DOI: 10.1016/j.apcata.2005.08.021
Google Scholar
[44]
N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal., B, 62 (2006) 169-180.
DOI: 10.1016/j.apcatb.2005.07.009
Google Scholar
[45]
S.H. Liu, Z.H. Zhao, Z.Z. Wang, Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts, Photochem. Photobiol. Sci., 6 (2007) 695-700.
DOI: 10.1039/b613098d
Google Scholar
[46]
Z. Zhang, C.C. Wang, R. Zakaria, J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 102 (1998) 10871-10878.
DOI: 10.1021/jp982948+
Google Scholar
[47]
Jin Weiren, Thesis of master degree, Fouzhou University,in Chinese, 2004, 31-33.
Google Scholar
[48]
J.C. Yu, J.G. Yu, W.K. Ho, L.Z. Zhang, Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun., (2001) 1942-1943.
DOI: 10.1039/b105471f
Google Scholar
[49]
S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger, J. Photochem. Photobiol., A, 115 (1998) 223-226.
DOI: 10.1016/s1010-6030(98)00274-3
Google Scholar
[50]
I.H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal. B: Environ., 37 (2002) 37-48.
DOI: 10.1016/s0926-3373(01)00322-8
Google Scholar
[51]
T.V. Nguyen and J.C.S. Wu, Photoreduction of CO2 in an optical-fiber photoreactor:Effects of metals addition and catalyst carrier, Appl. Catal., A, 335 (2008) 112-120.
DOI: 10.1016/j.apcata.2007.11.022
Google Scholar
[52]
C. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts, J. Phys. Chem. Lett., 1 (2010) 48-53.
DOI: 10.1021/jz9000032
Google Scholar
[53]
H.C. Yang, H.Y. Lin, Y.S. Chien, J.C.S. Wu, H.H. Wu, Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol, Catal. Lett., 131 (2009) 381-387.
DOI: 10.1007/s10562-009-0076-y
Google Scholar
[54]
Q.H. Zhang, W.D. Han, Y.J. Hong, J.G. Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst, Catal. Today, 148 (2009) 335-340.
DOI: 10.1016/j.cattod.2009.07.081
Google Scholar
[55]
S.S. Tan, L. Zou, E. Hu, Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour, Catal. Today 131 (2008) 125-129.
DOI: 10.1016/j.cattod.2007.10.011
Google Scholar
[56]
K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O, Catal. Today 74 (2002) 241-248.
DOI: 10.1016/s0920-5861(02)00027-5
Google Scholar
[57]
K. KocˇI, K. Mateˇju˚, L. Obalova, S. Krejcˇikova, Z. Lacny´, D. Placha, L. Cˇapek, A. Hospodkova, O. ˇSolcova, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2, Appl. Catal. B, 96 (2010) 239-244.
Google Scholar
[58]
Ch.-Ch. Chang, Ch.-K. Lin, Ch.-Ch. Chan, Ch.-S. Hsu, Ch.-Y. Chen, Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions, Thin Solid Films, 494 (2006) 274-278.
DOI: 10.1016/j.tsf.2005.08.152
Google Scholar
[59]
Ch.-Ch. Chang, J.-Y Chen, T.-L. Hsu, Ch.-K. Lin, Ch.-Ch. Chan, Photocatalytic properties of porous TiO2/Ag thin films, Thin Solid Films, 516(8) (2008) 1743-1747.
DOI: 10.1016/j.tsf.2007.05.033
Google Scholar
[60]
M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A: Chem. 189 (2007) 258-263.
DOI: 10.1016/j.jphotochem.2007.02.010
Google Scholar
[61]
H.E. Chao, Y.U. Yun, H.U. Xingfang, A. Larbot, Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder, J. Eur. Ceram. Soc. 23 (2003) 1457-1464.
DOI: 10.1016/s0955-2219(02)00356-4
Google Scholar
[62]
Y. Li, W.N. Wang, Z.L. Zhan, M.H. Woo, C.Y. Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts, Appl. Catal., B, 100 (2010) 386-392.
DOI: 10.1016/j.apcatb.2010.08.015
Google Scholar
[63]
C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts, J. Mater. Chem. 21 (2011) 13452.
DOI: 10.1039/c1jm12367j
Google Scholar