Metal Doped TiO2 Photocatalysts for CO2 Photoreduction

Article Preview

Abstract:

Greenhouse gases such as CO2, CH4 and CFCs are the primary causes of global warming. Worldwide, people are exploring techniques to reduce, capture, store CO2 gas and even convert this gas in to some useful chemicals. CO2 can be transformed into hydrocarbons in a photocatalytic reaction. The advantage of photo reduction of CO2 is to use inexhaustible solar energy. Knowledge of elementary steps in photocatalytic CO2 reduction under UV irradiation is required in order to improve the photo efficiency of the photocatalyst. A semiconductor photocatalyst mediating CO2 reduction and water oxidation needs to absorb light energy, generate electron hole pairs, spatially separate them, transfer them to redox active species across the interface and minimize electron hole recombination. This requires the semiconductor to have its conduction band electrons at higher energy compared to the CO2 reduction potential while the holes in the valence band need to be able to oxidize water to O2. A single semiconductor does not usually satisfy these requirements. Some recent developments in this field have been moves towards rational photocatalyst design, the use of highly active isolated Ti-species in mesoporous and microporous materials, metal-doping of TiO2, development of catalysts active at longer wavelengths than can be achieved with commercially available titania etc. The use of transition-metal loaded titanium dioxide (TiO2) has been extensively studied as a photocatalyst in photoreactions. Unlike traditional catalysts drive chemical reactions by thermal energy, semiconducting photocatalysts can induce chemical reactions by inexhaustible sunlight and convert CO2 in to the useful hydrocarbons. In this review article we will cover different aspects of metal doped nano structured TiO2 photocatalysts, used to convert/reduce CO2 in to useful hydrocarbons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-256

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Mori, H. Yamashita, M. Anpo, Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts, RSC Adv., 2 (2012) 3165-3172.

DOI: 10.1039/c2ra01332k

Google Scholar

[2] Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond, Article in press as: Chem. Rev. (2012)

DOI: 10.1016/j.ccr.2012.04.018

Google Scholar

[3] K. Hashimoto, H. Irie, Akira Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, AAPPS Bulletin December, 17(6) (2007) 12-28.

Google Scholar

[4] U.G. Akpan, B.H. Hameed, The advancements in sol–gel method of doped-TiO2 photocatalysts, Applied Catalysis A: General 375 (2010) 1-11.

DOI: 10.1016/j.apcata.2009.12.023

Google Scholar

[5] C.-C. Yang, Y.-H. Yu, B. van der Linden, J.C.S. Wu, G. Mul, Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction?, J. Am. Chem. Soc., 132 (2010) 8398-8406.

DOI: 10.1021/ja101318k

Google Scholar

[6] Slamet, H. W. Nasution, E. Purnama, K. Riyani, J. Gunlazuardi, Effect of Copper Species in a Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-doped Titania Catalysts, World Applied Sciences Journal 6 (1) (2009) 112-122.

DOI: 10.1016/j.catcom.2005.01.011

Google Scholar

[7] V.P. Indrakanti, J.D. Kubickib, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2 (2009) 745-758.

DOI: 10.1039/b822176f

Google Scholar

[8] G. Palmisano, V. Augugliaro, M. Pagliarob, L. Palmisano, Photocatalysis: a promising route for 21st century organic chemistry, Chem. Commun., (2007) 3425-3437.

DOI: 10.1039/b700395c

Google Scholar

[9] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 45 (8) (2006) 2558-2568.

DOI: 10.1021/ie0505763

Google Scholar

[10] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2) (2004) 33-177.

DOI: 10.1016/j.progsolidstchem.2004.08.001

Google Scholar

[11] Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3- 4) (2000) 543-556.

DOI: 10.2138/am-2000-0416

Google Scholar

[12] U. Diebold, The surface science of titanium dioxide. Surface Science Reports, 2003, 48(5-8) (2003) 53-229.

DOI: 10.1016/s0167-5729(02)00100-0

Google Scholar

[13] X.-Q.Gong, A. Selloni, M. Batzill, U. Diebold, Steps on anatase TiO2(101). Nature Materials 5(8) (2006) 665-670.

DOI: 10.1038/nmat1695

Google Scholar

[14] X. Q.Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, Small au and pt clusters at the anatase TiO2(101) surface: Behavior at terraces, steps, and surface oxygen vacancies. Journal Of The American Chemical Society, 130 (2008) 370-381.

DOI: 10.1021/ja0773148

Google Scholar

[15] U. Diebold, N. Ruzycki, G.S. Herman, A. Selloni, One step towards bridging the materials gap: surface studies of TiO2 anatase. Catalysis Today, 85 (2003) 93-100.

DOI: 10.1016/s0920-5861(03)00378-x

Google Scholar

[16] N. Ruzycki, G.S. Herman, L.A. Boatner, U. Diebold, Scanning tunneling microscopy study of the anatase (100) surface. Surface Science, 529 (2003) L239-L244.

DOI: 10.1016/s0039-6028(03)00117-1

Google Scholar

[17] M. Lazzeri, A. Selloni, Stress-driven reconstruction of an oxide surface: The anatase TiO2(001)-(1x4) surface. Phys. Rev. Lett., 87(26) (2001) 266105.

Google Scholar

[18] Y. Liang, S.P. Gan, S.A. Chambers, E.I. Altman, Surface structure of anatase TiO2(001): Reconstruction, atomic steps, and domains. Physical Review B, 63(23 (2001) 235402(7).

Google Scholar

[19] W. Gopel, G. Rocker, R. Feierabend, Intrinsic defects of titanium dioxide(110): Interaction with chemisorbed oxygen, hydrogen, carbon monoxide, and carbon dioxide. Physical Review B: Condensed Matter and Materials Physics, 28(6) (1983) 3427-38.

Google Scholar

[20] M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, Nature, 275 (1978) 115-116.

DOI: 10.1038/275115a0

Google Scholar

[21] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698) (1979) 637-638.

DOI: 10.1038/277637a0

Google Scholar

[22] E. Fujita, Photochemical carbon dioxide reduction with metal complexes. Coordination Chemistry Reviews, 186 (1999) 373-384.

DOI: 10.1016/s0010-8545(99)00023-5

Google Scholar

[23] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S.G. Zhang, Y. Ichihashi, D.R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 44(1-4) (1998) 327-332.

DOI: 10.1016/s0920-5861(98)00206-5

Google Scholar

[24] W. Lin, H. Frei, Photoactivation of Ti centers in mesoporous silicate sieve under visible and UV light. Studies in Surface Science and Catalysis, (Carbon Dioxide Utilization for Global Sustainability), 153 (2004) 283-288.

DOI: 10.1016/s0167-2991(04)80265-9

Google Scholar

[25] W.Y. Lin, H.X. Han, H. Frei, CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J. Phy. Chem. B 108, (47) (2004) 18269-18273.

DOI: 10.1021/jp040345u

Google Scholar

[26] M. Anpo, H. Yamashita, Photocatalytic Reductions - Photocatalytic Reduction of Carbon Dioxide with Water and Hydrogenation of Unsaturated Hydrocarbons with Water, in: Hetergeneous Photocatalysis, M. Schiavello, (Ed.), John Wiley & Sons: Chichester, UK, 1997, p.136.

Google Scholar

[27] H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45(1-4) (1998) 221.

DOI: 10.1016/s0920-5861(98)00219-3

Google Scholar

[28] K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic Reduction of CO2 with H2O on Ti-Beta Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties. J. Phys. Chem. B, 105(35) (2001) 8350-8355.

DOI: 10.1021/jp010885g

Google Scholar

[29] K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts. Catalysis Letters, 80(3) (2002) 111-114.

DOI: 10.1016/s0920-5861(02)00027-5

Google Scholar

[30] H. Yamashita, K. Ikeue, T. Takewaki, M. Anpo, In situ XAFS Studies on the Effects of the Hydrophobic–Hydrophilic Properties of Ti-Beta Zeolites in the Photocatalytic Reduction of CO2 with H2O. Topics in Catalysis, 18(1) (2002) 95-100.

DOI: 10.1023/a:1013853618581

Google Scholar

[31] E.A. Wovchko, J.T.Jr. Yates, Photochemical Activation of CO2 on RhI(CO)2/Al2O3-CO2 Dissociation and Oxygen Atom Exchange. Journal of the American Chemical Society, 120(30) (1998) 7544-7550.

DOI: 10.1021/ja9804114

Google Scholar

[32] C. H. Hamann, P. Schmode, Electric current from the direct conversion of low molecular weight C, H, O-compounds, J. Power Sources, 1(2) (196) 141-157.

DOI: 10.1016/0378-7753(76)80017-1

Google Scholar

[33] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-638.

DOI: 10.1038/277637a0

Google Scholar

[34] K.R. Thampi, J. Kiwi, M. Gratzel, Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure, Nature, 327 (1987) 506-508.

DOI: 10.1038/327506a0

Google Scholar

[35] K. Hirano, K. Inoue, T. Yatsu, Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder, J. Photochem. Photobiology, A, 64 (1992) 255-258.

DOI: 10.1016/1010-6030(92)85112-8

Google Scholar

[36] I.H. Tseng, J.C.-S. Wu, Chemical states of metal-loaded titania in the photoreduction of CO2, Catal. Today, 97 (2004) 113-119.

DOI: 10.1016/j.cattod.2004.03.063

Google Scholar

[37] H. Yamashita, A. Shiga, S. Kawasaki, Y. Ichihashi, S. Ehara, M. Anpo, Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts, Energy Convers. Manage., 36 (1995) 617-620.

DOI: 10.1016/0196-8904(95)00081-n

Google Scholar

[38] H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves, Catal. Today, 45 (1998) 221-227.

DOI: 10.1016/s0920-5861(98)00219-3

Google Scholar

[39] J.S. Hwang, J.S. Chang, S.E. Park, K. Ikeue, M. Anpo, Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts, Top. Catal., 2005, 35, 311-319.

DOI: 10.1007/s11244-005-3839-8

Google Scholar

[40] I.H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal., B, 37 (2002) 37-48.

DOI: 10.1016/s0926-3373(01)00322-8

Google Scholar

[41] I.H. Tseng, J.C.S. Wu, H.Y. Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal., 221 (2004) 432-440.

DOI: 10.1016/j.jcat.2003.09.002

Google Scholar

[42] P. Pathak, M.J. Meziani, L. Castillo, Y.P. Sun, Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction, Green Chem., 7 (2005) 667-670.

DOI: 10.1039/b507103h

Google Scholar

[43] J.C.S. Wu, H.M. Lin, C.L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor, Appl. Catal., A, 296 (2005) 194-200.

DOI: 10.1016/j.apcata.2005.08.021

Google Scholar

[44] N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal., B, 62 (2006) 169-180.

DOI: 10.1016/j.apcatb.2005.07.009

Google Scholar

[45] S.H. Liu, Z.H. Zhao, Z.Z. Wang, Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts, Photochem. Photobiol. Sci., 6 (2007) 695-700.

DOI: 10.1039/b613098d

Google Scholar

[46] Z. Zhang, C.C. Wang, R. Zakaria, J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 102 (1998) 10871-10878.

DOI: 10.1021/jp982948+

Google Scholar

[47] Jin Weiren, Thesis of master degree, Fouzhou University,in Chinese, 2004, 31-33.

Google Scholar

[48] J.C. Yu, J.G. Yu, W.K. Ho, L.Z. Zhang, Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun., (2001) 1942-1943.

DOI: 10.1039/b105471f

Google Scholar

[49] S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger, J. Photochem. Photobiol., A, 115 (1998) 223-226.

DOI: 10.1016/s1010-6030(98)00274-3

Google Scholar

[50] I.H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal. B: Environ., 37 (2002) 37-48.

DOI: 10.1016/s0926-3373(01)00322-8

Google Scholar

[51] T.V. Nguyen and J.C.S. Wu, Photoreduction of CO2 in an optical-fiber photoreactor:Effects of metals addition and catalyst carrier, Appl. Catal., A, 335 (2008) 112-120.

DOI: 10.1016/j.apcata.2007.11.022

Google Scholar

[52] C. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts, J. Phys. Chem. Lett., 1 (2010) 48-53.

DOI: 10.1021/jz9000032

Google Scholar

[53] H.C. Yang, H.Y. Lin, Y.S. Chien, J.C.S. Wu, H.H. Wu, Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol, Catal. Lett., 131 (2009) 381-387.

DOI: 10.1007/s10562-009-0076-y

Google Scholar

[54] Q.H. Zhang, W.D. Han, Y.J. Hong, J.G. Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst, Catal. Today, 148 (2009) 335-340.

DOI: 10.1016/j.cattod.2009.07.081

Google Scholar

[55] S.S. Tan, L. Zou, E. Hu, Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour, Catal. Today 131 (2008) 125-129.

DOI: 10.1016/j.cattod.2007.10.011

Google Scholar

[56] K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O, Catal. Today 74 (2002) 241-248.

DOI: 10.1016/s0920-5861(02)00027-5

Google Scholar

[57] K. KocˇI, K. Mateˇju˚, L. Obalova, S. Krejcˇikova, Z. Lacny´, D. Placha, L. Cˇapek, A. Hospodkova, O. ˇSolcova, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2, Appl. Catal. B, 96 (2010) 239-244.

Google Scholar

[58] Ch.-Ch. Chang, Ch.-K. Lin, Ch.-Ch. Chan, Ch.-S. Hsu, Ch.-Y. Chen, Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions, Thin Solid Films, 494 (2006) 274-278.

DOI: 10.1016/j.tsf.2005.08.152

Google Scholar

[59] Ch.-Ch. Chang, J.-Y Chen, T.-L. Hsu, Ch.-K. Lin, Ch.-Ch. Chan, Photocatalytic properties of porous TiO2/Ag thin films, Thin Solid Films, 516(8) (2008) 1743-1747.

DOI: 10.1016/j.tsf.2007.05.033

Google Scholar

[60] M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A: Chem. 189 (2007) 258-263.

DOI: 10.1016/j.jphotochem.2007.02.010

Google Scholar

[61] H.E. Chao, Y.U. Yun, H.U. Xingfang, A. Larbot, Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder, J. Eur. Ceram. Soc. 23 (2003) 1457-1464.

DOI: 10.1016/s0955-2219(02)00356-4

Google Scholar

[62] Y. Li, W.N. Wang, Z.L. Zhan, M.H. Woo, C.Y. Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts, Appl. Catal., B, 100 (2010) 386-392.

DOI: 10.1016/j.apcatb.2010.08.015

Google Scholar

[63] C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts, J. Mater. Chem. 21 (2011) 13452.

DOI: 10.1039/c1jm12367j

Google Scholar