Effect of Dopants on ZnO Mediated Photocatalysis of Dye Bearing Wastewater: A Review

Article Preview

Abstract:

This article provides the brief overview on effect of dopant on the performance of zinc oxide (ZnO) as photocatalysts for the degradation of dye wastewaters. ZnO itself is a semi conductor having wide band gap (3.37eV), thus requiring high energy to work as a photocatalyst. To decrease the band gap or to alter its requirement of high energy from light sources like UV to visible (solar), surface modification or doping of ZnO is necessary. This paper discusses how dopant modifies the characteristics of ZnO which helps in degradation of dyes in colored wastewaters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-174

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Muruganandham, N. Sobana, M. Swaminathan, Solar assisted photocatalytic and photochemical degradation of Reactive Black 5, J. Hazard. Mater. B. 37 (2006) 1371–1376.

DOI: 10.1016/j.jhazmat.2006.03.030

Google Scholar

[2] Y. Jiang, Y. Sun, H. Liu, F. Zhu, H. Yin, Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2 – ZnO, Dyes Pigments. 78 (2008) 77 – 83.

DOI: 10.1016/j.dyepig.2007.10.009

Google Scholar

[3] B. Sivasankar, V. Sadasivam, Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst, J. Mol. Catal. A. Chem. 306 (2009) 77–81.

DOI: 10.1016/j.molcata.2009.02.028

Google Scholar

[4] A. Akyol, M. Bayramoglu, Photocatalytic degradation of Remazol Red F3B using ZnO catalyst, J. Hazard. Mater. B. 124 (2005) 241–246.

DOI: 10.1016/j.jhazmat.2005.05.006

Google Scholar

[5] S. Chakrabarti, B. K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. B 112 (2004) 269–278.

DOI: 10.1016/j.jhazmat.2004.05.013

Google Scholar

[6] N. Sobana, M. Swaminathan, Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53, Sol. Energ. Mat. Sol. C. 91 (2007) 727–734.

DOI: 10.1016/j.solmat.2006.12.013

Google Scholar

[7] J-Z. Kong, A-D. Li, H-F. Zhai, Y-P. Gong, H. Li, D. Wu, Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination, J. Solid. State. Chem. 182 (2009) 2061 – 2067.

DOI: 10.1016/j.jssc.2009.03.022

Google Scholar

[8] M. Fu, Y. Li, S. Wu, P. Lu, J. Liu, F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Appl. Surf. Sci. 258 (2011) 1587–1591.

DOI: 10.1016/j.apsusc.2011.10.003

Google Scholar

[9] C. Lu, Y. Wu, F. Mai, W. Chun, C. Wu, W. Lin, C-C. Chen, Degradation efficiencies and mechanisms of the ZnO-mediated photocatalytic degradation of Basic Blue 11 under visible light irradiation, J. Mol. Catal. A. Chem. 310 (2009) 159–165.

DOI: 10.1016/j.molcata.2009.06.011

Google Scholar

[10] G. Liu, L. Wang, H.G. Yang, H. -M. Cheng, G. Qing, (Max) Lu. Titania-based photocatalysts—crystal growth, doping and hetero-structuring, J. Mater. Chem. 20 (2010) 831–843.

DOI: 10.1039/b909930a

Google Scholar

[11] M. A. Mahmood, S. Baruah, J. Dutta, Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles, Mater. Chem. Phys. 130 (2011) 531– 535.

DOI: 10.1016/j.matchemphys.2011.07.018

Google Scholar

[12] J-Z. Kong, A-D. Li, X-Y. Li, H-F. Zhai, W-Q. Zhang, Y-P. Gong, H. Li, D. Wu, Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle, J. Solid State. Chem. 183 (2010) 1359–1364.

DOI: 10.1016/j.jssc.2010.04.005

Google Scholar

[13] S. Liao, H. Donggen, D. Yu, Y. Su, G. Yuan, Preparation and characterization of ZnO/TiO2, SO42−/ZnO/TiO2 photocatalyst and their photocatalysis, J. Photoch. Photobio. A. 168 (2004) 168, 7–13.

DOI: 10.1016/j.jphotochem.2004.05.010

Google Scholar

[14] R. Qiu, D. Zhang, Y. Mo, L. Songa, E. Brewer, X. Huang, Y. Xiong, Photocatalytic activity of polymer-modified ZnO under visible light irradiation, J. Hazard. Mater. 156 (2008) 80–85.

DOI: 10.1016/j.jhazmat.2007.11.114

Google Scholar

[15] J. Wang, J. Li, Y. Xie, C. Li, G. Han, L. Zhang, R. Xu, X. Zhang, Investigation on solar photocatalytic degradation of various dyes in the presence of Er3+:YAlO3/ZnO–TiO2 composite, J. Environ. Manage. 91 (2010) 677–684.

DOI: 10.1016/j.jenvman.2009.09.031

Google Scholar

[16] B. Krishnakumar, M. Swaminathan, Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions, Spectrochim. Acta. A. 81 (2011) 739–744.

DOI: 10.1016/j.saa.2011.07.019

Google Scholar

[17] J. Zhai, X. Tao, Y. Pu, X-F. Zeng, J-F. Chen, Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property, Appl. Surf. Sci. 257 (2010) 393–397.

DOI: 10.1016/j.apsusc.2010.06.091

Google Scholar

[18] C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes, J. Hazard. Mater. 176 (2010) 807–813.

DOI: 10.1016/j.jhazmat.2009.11.106

Google Scholar

[19] Z. Yang, L. Lv, Y. Dai, Z. Xv, D. Qian, Synthesis of ZnO-SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties, Appl. Surf. Sci. 256 (2010) 2898–2902.

DOI: 10.1016/j.apsusc.2009.11.047

Google Scholar

[20] J. Wang, X. M. Fan, Z. W. Zhou, K. Tian, Preparation of Ag nanoparticles coated tetrapod-like ZnO whisker photocatalysts using photoreduction, Mat. Sci. Eng. B-Solid. 176 (2011) 978– 983.

DOI: 10.1016/j.mseb.2011.05.027

Google Scholar

[21] R. M. Mohamed, M. A. Al-Rayyani, E. S. Baeissa, I. A. Mkhalid, Nano-sized Fe-metal catalyst on ZnO–SiO2: (photo-assisted deposition and impregnation) Synthesis routes and nanostructure characterization, J. Alloy. Compd. 509 (2011) 6824–6828.

DOI: 10.1016/j.jallcom.2011.03.098

Google Scholar

[22] Y. Changlin, Y. Kai, S. Qing, Y. Jimmy, C. Fangfang, L. Xin, Preparation of WO3/ZnO Composite Photocatalyst and Its Photocatalytic Performance, Chinese. J. Catal. 32 (2011) 555–565.

Google Scholar

[23] M. Yuan, S. Wang, X. Wang, L. Zhao, T. Hao, Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions, Appl. Surf. Sci. 257 (2011) 7913–7919.

DOI: 10.1016/j.apsusc.2011.03.044

Google Scholar

[24] P. Sathishkumar, R. Sweena, J. J. Wub, S. Anandan, Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chem. Eng. J. 171 (2011) 136–140.

DOI: 10.1016/j.cej.2011.03.074

Google Scholar

[25] I. Fatimah, S. Wang, D. Wulandari, ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue, Appl. Clay. Sci. 53 (2011) 553–560.

DOI: 10.1016/j.clay.2011.05.001

Google Scholar

[26] C. Wu, L. Shen, Y. C. Zhang, Q. Huang, Synthesis of AgBr/ZnO nanocomposite with visible light-driven photocatalytic activity, Mater. Lett. 66 (2012) 83–85.

DOI: 10.1016/j.matlet.2011.08.030

Google Scholar

[27] R. Slama, F. Ghribi, A. Houas, C. Barthou, L.E. Mir, Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder, Thin Solid Films. 519 (2011) 5792–5795.

DOI: 10.1016/j.tsf.2010.12.197

Google Scholar

[28] X. Jia, H. Fana, M. Afzaal, X. Wu, P. O'Brien, Solid state synthesis of tin-doped ZnO at room temperature: Characterization and its enhanced gas sensing and photocatalytic properties, J. Hazard. Mater. 193 (2011) 194–199.

DOI: 10.1016/j.jhazmat.2011.07.049

Google Scholar

[29] C. Wu, L. Shen, Y-C. Zhang, Q. Huang, Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett. 65 (2011) 1794–1796.

DOI: 10.1016/j.matlet.2011.03.070

Google Scholar

[30] K. C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters, Micropor. Mesopor. Mat. 134 (2010) 195–202.

DOI: 10.1016/j.micromeso.2010.05.026

Google Scholar

[31] M. G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles, Mater. Lett. 65 (2011) 1797–1800.

DOI: 10.1016/j.matlet.2011.03.079

Google Scholar

[32] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[33] N. V. Kaneva, D. T. Dimitrov, C.D. Dushkin, Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light, Appl. Surf. Sci. 257 (2011) 8113–8120.

DOI: 10.1016/j.apsusc.2011.04.119

Google Scholar

[34] T. Chen, Y. Zheng, J-M. Lin, G. Chen, Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry, J. Am. Soc. Mass. Spectrom.19 (2008) 997–1003.

DOI: 10.1016/j.jasms.2008.03.008

Google Scholar

[35] T. Tan, Y. Li, Y. Liu, B. Wang, X. Song, E. Li, H. Wang, H. Yan, Two-step preparation of Ag/tetrapod-like ZnO with photocatalytic activity by thermal evaporation and sputtering, Mater. Chem. Phys. 111 (2008) 305–308.

DOI: 10.1016/j.matchemphys.2008.04.013

Google Scholar

[36] W. Xie, Y. Li, W. Sun, J. Huang, H. Xie, X. Zhao, Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability, J. Photoch. Photobio. A. 216 (2010) 149–155.

DOI: 10.1016/j.jphotochem.2010.06.032

Google Scholar

[37] C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Lv, T. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182b (2010) 123–129.

DOI: 10.1016/j.jhazmat.2010.05.141

Google Scholar