Heat Transfer Characteristics of Nano-Fluids

Article Preview

Abstract:

Nanofluids are engineered colloids made of a base fluid and nanoparticles, which become potential candidate for next generation heat transfer medium. Nanofluids have higher thermal conductivity and single-phase heat transfer coefficients than their base fluids. The use of additives is a technique applied to enhance the heat transfer performance of base fluids. Recent articles address the unique features of nanofluids, such as enhancement of heat transfer, improvement in thermal conductivity, increase in surface volume ratio, Brownian motion, thermophoresis, etc. A complete understanding about the heat transfer enhancement in forced convection in laminar and turbulent flow with nanofluids is necessary for the practical applications. There are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling, droplet spreading, and convective heat transfer are very important in order to exploit nanofluids as the next generation coolants, considerably less efforts have been made on these major features of nanofluids. This review summarizes recent research on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows and identifies opportunities for future research.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-195

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei 4 (1993) 227–233.

DOI: 10.2963/jjtp.7.227

Google Scholar

[2] G.A. Slack, Thermal conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300 K, Physical Review 126 (1962) 427– 441.

Google Scholar

[3] G.A. Slack, Thermal conductivity of pure and impure silicon, silicon carbide and diamond, J. of Applied Physics 35 (1964) 3460–3466.

DOI: 10.1063/1.1713251

Google Scholar

[4] P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Physical Review Letters 87 (215502) (2001) 1–4.

DOI: 10.1103/physrevlett.87.215502

Google Scholar

[5] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, A.S.M.E.F.E.D. 231 (1995) 99–105.

Google Scholar

[6] H. Akoh, Y. Tsukasaki, S. Yatsuya, A. Tasaki, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate, J. of Crystal Growth 45 (1978) 495–500.

DOI: 10.1016/0022-0248(78)90482-7

Google Scholar

[7] M. Wagener, B.S. Murty, B. Gunther, Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids, in: S. Komarnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, vol. 457, Materials Research Society, Pittsburgh, PA, (1997) 149–154.

DOI: 10.1557/proc-457-149

Google Scholar

[8] J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Materials Research Society Symposium – Proceedings, vol. 457, Materials Research Society, Pittsburgh, PA, USA, Boston, MA, USA, (1997) 3–11.

Google Scholar

[9] H. Zhu, Y. Lin, Y. Yin, A novel one-step chemical method for preparation of copper nanofluids, J. of Colloid and Interface Science 227 (2004) 100–103.

DOI: 10.1016/j.jcis.2004.04.026

Google Scholar

[10] H. Chang, T.T. Tsung, L.C. Chen, Y.C. Yang, H.M. Lin, C.K. Lin, Nanoparticle suspension preparation using the Arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode, Int. J. of Adv Manufacturing Technology 26 (2005) 552–558.

DOI: 10.1007/s00170-003-2029-8

Google Scholar

[11] C.H Lo, T.T. Tsung, L.C. Chen, C.H. Su, H.M. Lin, Fabrication of copper oxide nanofluid using submerged Arc Nanoparticle Synthesis System (SANSS), J. of Nanopart. Res. 7 (2005) 313–320.

DOI: 10.1007/s11051-004-7770-x

Google Scholar

[12] C.H Lo, T.T. Tsung, L.C. Chen, Shaped-controlled synthesis of Cu-based nanofluid using submerged Arc Nanoparticle Synthesis System (SANSS), J. of Crystal Growth 227 (2005) 636–642.

DOI: 10.1016/j.jcrysgro.2005.01.067

Google Scholar

[13] X. Wei, H. Zhu, T. Kong, L. Wanga, Synthesis and thermal conductivity of Cu2O nanofluids, Int. J of Heat & Mass Transfer 52 (2009) 4371–4374.

DOI: 10.1016/j.ijheatmasstransfer.2009.03.073

Google Scholar

[14] S. Lee, J.A. Eastman, S.U.S. Choi, S. Li, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. of Heat Transfer 121 (1999) 280–289.

DOI: 10.1115/1.2825978

Google Scholar

[15] X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. of Thermophys. Heat Transfer 13(4) (1999) 474–480.

DOI: 10.2514/2.6486

Google Scholar

[16] T.K. Hong, H.S. Yang, C.J. Choi, Study of the enhanced thermal conductivity of Fe nanofluids, J. Appl. Phys. 97 (064311) (2005) 1–4.

Google Scholar

[17] K.S. Hong, T.K. Hong, H.S Yang, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Appl. Phys. Lett. 88 (31901) (2006) 1–3.

DOI: 10.1063/1.2166199

Google Scholar

[18] S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2–water based nanofluids, Int. J. of Thermal Science 44(4) (2005) 367–373.

DOI: 10.1016/j.ijthermalsci.2004.12.005

Google Scholar

[19] H. Xie, J.Wang, T. Xi, Y. Liu, F. Ai, Thermal conductivity enhancement of suspensions containing nanosized alumina particle, J. Appl. Phys. 91 (2002) 4568–4572.

DOI: 10.1063/1.1454184

Google Scholar

[20] J.A. Eastman, S.U.S. Choi, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718–720.

DOI: 10.1063/1.1341218

Google Scholar

[21] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. of Heat & Mass Transfer 21 (2000) 58–64.

Google Scholar

[22] H.E. Patel, S.K. Das, T. Sundararagan, A.S. Nair, B. Geoge, T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett. 83 (2003) 2931–2933.

DOI: 10.1063/1.1602578

Google Scholar

[23] S.A. Putnam, D.G. Cahill, P.V. Braun, Thermal conductivity of nanoparticle suspensions, J. Appl. Phys. 99 (084308) (2006) 1–6.

Google Scholar

[24] H. Zhu, C. Zhang, S. Liu, Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids, Appl. Phys. Lett. 23123; 89 (2006) 1–3.

DOI: 10.1063/1.2221905

Google Scholar

[25] Min-Sheng Liu, Mark Ching-Cheng Lin, C.Y. Tsai, Chi-Chuan Wang, Enhancement of thermal conductivity with cu for nanofluids using chemical reduction method, Int. J. of Heat & Mass Transfer 49 (2006) 3028–3033.

DOI: 10.1016/j.ijheatmasstransfer.2006.02.012

Google Scholar

[26] H. Xie, H. Lee, W. Youn, M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, J. Appl. Phys. 94 (2003) 4967–4971.

DOI: 10.1063/1.1613374

Google Scholar

[27] B. Yang, Z.H. Han, Thermal conductivity enhancement in water-in-FC72 nano-emulsion fluids, Appl. Phys. Lett. 88 (261914) (2006) 1–3.

DOI: 10.1063/1.2218325

Google Scholar

[28] H.Q. Xie, et al., Study on the thermal conductivity of SiC nanofluids, J. Chin. Ceram. Soc. 29 (2001) 361–364 (in Chinese).

Google Scholar

[29] Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Stability and thermal conductivity characteristics of nanofluids, Thermochim. Acta. 455 (2007) 70–74.

DOI: 10.1016/j.tca.2006.11.036

Google Scholar

[30] X. Li, D. Zhu, X. Wang, Evaluation on dispersion behavior of the aqueous copper nano-suspensions, J. Colloid Interface Sci. 3 (10) (2007) 456–463.

DOI: 10.1016/j.jcis.2007.05.065

Google Scholar

[31] X. Peng, X. Yu, Influence factors on suspension stability of nanofluids, J. Zhejiang Univ.: Eng. Sci. 41 (2007) 577–580 (in Chinese).

Google Scholar

[32] J. Kestin, W.A. Wakeham, A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements, Physica. A. 92 (1978) 102–116.

DOI: 10.1016/0378-4371(78)90023-7

Google Scholar

[33] S.K. Das, N. Putta, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME Trans. J. of Heat Transfer 125 (2003) 567–574.

DOI: 10.1115/1.1571080

Google Scholar

[34] T.K. Hong, H.S. Yang, C.J. Choi, Study of the enhanced thermal conductivity of Fe nanofluids, J. Appl. Phys. 97 (064311) (2005) 1–4.

Google Scholar

[35] X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, J. Appl. Phys. 100 (044325) (2006) 1–5.

DOI: 10.1063/1.2259789

Google Scholar

[36] N. Putra, W. Roetzel, S.K. Das, Natural convection of nanofluids, Heat Mass Transfer 39 (2003) 775–784.

DOI: 10.1007/s00231-002-0382-z

Google Scholar

[37] C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett. 87 (2005) 153107.

DOI: 10.1063/1.2093936

Google Scholar

[38] C.H. Li, G.P. Peterson, The effect of particle size on the effective thermal conductivity of Al2O3–water nanofluids, J. Appl. Phys. 101 (2007) 044312.

DOI: 10.1063/1.2436472

Google Scholar

[39] E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. Rev. E. 76 (2007) 061203.

DOI: 10.1103/physreve.76.061203

Google Scholar

[40] L.P. Zhou, B.X. Wang, Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady method. Annu. Proc. Chin. Eng Thermophys. (2002) 889–892.

Google Scholar

[41] W. Duangthongsuk, S. Wongwises, Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance, Exp. Therm. Fluid Sci. 34 (5) (2010) 616–624.

DOI: 10.1016/j.expthermflusci.2009.11.012

Google Scholar

[42] X.J. Wang, X.F. Li, Influence of pH on nanofluids viscosity and thermal conductivity, Chin. Phys. Lett. 26 (5) (2009) 056601.

Google Scholar

[43] M. Chandrasekar, S. Suresh, A. Chandra Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3 / water nanofluid, Exp. Therm. Fluid Sci. 34 (2) (2010) 210–216.

DOI: 10.1016/j.expthermflusci.2009.10.022

Google Scholar

[44] M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, J. Fischer, Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80 (15) (2002) 2767–2769.

DOI: 10.1063/1.1469696

Google Scholar

[45] M.J. Assael, C.F. Chen, I.N. Metaxa W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, in: 15th Symposium on Thermophysical Properties, National Institute of Standards, University of Colorado, Boulder, USA, 2003.

Google Scholar

[46] M.J. Assael, C.F. Chen, I.N. Metaxa W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. of Thermophys. 25 (4) (2004) 971–985.

DOI: 10.1023/b:ijot.0000038494.22494.04

Google Scholar

[47] R. Prasher, D. Song, J. Wang, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett. 89 (133108) (2006) 1–3.

DOI: 10.1063/1.2356113

Google Scholar

[48] J.M. Li, Z.L. Li, B.X. Wang, Experimental viscosity measurements for copper oxide nanoparticle suspensions, Tsinghua Sci. Technol. 7 (2002) 198–201.

Google Scholar

[49] C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, et al., Temperature and particle size dependent viscosity data for water-based nanofluid-hysteresis phenomenon, Int. J. of Heat and Fluid Flow 28 (2007) 1492–1506.

DOI: 10.1016/j.ijheatfluidflow.2007.02.004

Google Scholar

[50] H. Chen, Y. Ding, Y. He, C. Tan, Rheological behavior of ethylene glycol based titania nanofluids, Chem. Phys. Lett. 444 (2007) 333–337.

DOI: 10.1016/j.cplett.2007.07.046

Google Scholar

[51] S. Guo, Z. Luo, T. Wang, J. Zhao, K. Cen, Viscosity of monodisperse silica nanofluids, Bull. Chin. Ceram. Soc. 25 (2006) 52–55 (in Chinese).

Google Scholar

[52] P.K. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm. Fluid Sci. 323 (2007) 397–402.

DOI: 10.1016/j.expthermflusci.2007.05.001

Google Scholar

[53] K. Kwak, C. Kim, Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea Aust. Rheol. J. 17 (2) (2005) 35–40.

Google Scholar

[54] S.K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nano-fluids, Int. J. of Heat & Mass Transfer 46 (2003) 851–862.

DOI: 10.1016/s0017-9310(02)00348-4

Google Scholar

[55] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. of Heat & Mass Transfer 49 (2006) 240–250.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.009

Google Scholar

[56] H.U. Kang, S.H. Kim, J.M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer 19 (2006) 181–191.

DOI: 10.1080/08916150600619281

Google Scholar

[57] R.K. Shah, A.L. London, Laminar flow forced convection in ducts, Supplement 1 to Advances in Heat Transfer, Academic Press, New York, 1978.

DOI: 10.1016/b978-0-12-020051-1.50001-2

Google Scholar

[58] R.K. Shah, M.S. Bhatti, Laminar convective heat transfer in ducts, in: S. Kakac, R.K. Shah, W. Aung (Eds.), Handbook of Single-Phase Convective Heat Transfer, Wiley, New York, 1987 (Chapter 3).

Google Scholar

[59] Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. University of California Publications on Engineering 2 (1930) 443–461.

Google Scholar

[60] A. Bejan, Convection heat transfer, John Wily & Sons, Inc., 2004.

Google Scholar

[61] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluid with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151–170.

DOI: 10.1080/08916159808946559

Google Scholar

[62] Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids. J. of Heat Transfer 125 (2003) 151–155.

DOI: 10.1115/1.1532008

Google Scholar

[63] E.E.B Maiga, S.J. Palm, C.T. Nguyen, G. Roy, N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. of Heat and Fluid Flow 26 (2005) 530–546.

DOI: 10.1016/j.ijheatfluidflow.2005.02.004

Google Scholar

[64] V.S. Arpaci, P.S. Larsen, Convection Heat Transfer, Prentice-Hall, Inc., Englewood Cliffs 1984.

Google Scholar

[65] S. Kakac¸ A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. of Heat & Mass Transfer 52 (2009) 3187–3196.

DOI: 10.1016/j.ijheatmasstransfer.2009.02.006

Google Scholar

[66] Y. He, J. Yi, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. of Heat & Mass Transfer 50 (2007) 2272–2281.

DOI: 10.1016/j.ijheatmasstransfer.2006.10.024

Google Scholar

[67] W.J. Tseng, K.C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. 355 (2003) 186–192.

DOI: 10.1016/s0921-5093(03)00063-7

Google Scholar

[68] K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. of Heat & Mass Transfer 52 (2009) 2189–2195.

DOI: 10.1016/j.ijheatmasstransfer.2007.11.063

Google Scholar

[69] W. Duangthongsuk, S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int. J. of Heat and Mass Transfer 53 (2010) 334–344.

DOI: 10.1016/j.ijheatmasstransfer.2009.09.024

Google Scholar

[70] D. Wen, Y. Ding, Formulation of nanofluids for natural convective heat transfer applications, Int. J. of Heat and Fluid Flow 26 (6) (2005) 855–864.

DOI: 10.1016/j.ijheatfluidflow.2005.10.005

Google Scholar

[71] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. of Heat and Mass Transfer 46 (2003) 3639–3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[72] J. Kim, Y.T. Kang, C.K. Choi, Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids 16 (2004) 2395–2401.

DOI: 10.1063/1.1739247

Google Scholar

[73] Q. Li, Y.M. Xuan, Convective heat transfer and flow characteristics of Cu–water nanofluids. Sci. China Ser E 45 (2002) 408–416.

Google Scholar

[74] S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems. Atlanta, USA: Int. Mechanical Engineering Congress and Exhibition; 1996.

Google Scholar

[75] S.P. Jang, S.U.S. Choi, Cooling performance of a micro channel heat sink with nanofluids. Appl. Therm. Eng. 26 (2006) 2457–2463.

Google Scholar

[76] Y.M. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. Int. J. of Heat & Mass Transfer 43 (2000) 3701–3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[77] J. Lee, I. Mudawar, Assessment of the effectiveness of nanofluids for single phase and two-phase heat transfer in micro-channels. Int. J. of Heat & Mass Transfer 50 (2007) 452–463.

DOI: 10.1016/j.ijheatmasstransfer.2006.08.001

Google Scholar

[78] R. Chein, J. Chuang, Experimental micro channel heat sink performance studies using nanofluids. Int. J. Therm. Sci. 46 (2007) 57–66.

DOI: 10.1016/j.ijthermalsci.2006.03.009

Google Scholar

[79] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. of Heat and Mass Transfer 47 (2004) 5181–5188.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.012

Google Scholar

[80] Y. Ding, H. Alias, D. Wen, A.R. Williams, Heat transfer of aqueous suspensions of carbon nanotubes. Int. J. of Heat & Mass Transfer 49 (2006) 240–250.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.009

Google Scholar

[81] H.T. Chien, C.I. Tsai, P.H. Chen, P.Y. Chen, Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid, in: ICEPT 2003, Fifth Int. Conference on Electronic Packaging Technology, Proceedings (IEEE Cat. No.03EX750), IEEE, Shanghai, China, 2003, p.389.

DOI: 10.1109/eptc.2003.1298767

Google Scholar

[82] Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. of Heat & Mass Transfer 48 (2005) 1107–1116.

DOI: 10.1016/j.ijheatmasstransfer.2004.09.038

Google Scholar

[83] S.Z. Heris, S.G. Etemad, M. N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Communications in Heat and Mass Transfer 33(4) (2006) 529–535.

DOI: 10.1016/j.icheatmasstransfer.2006.01.005

Google Scholar

[84] W. Williams, J. Buongiorno, L.W. Hu, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/ water nanoparticle colloids (nanofluids) in horizontal tubes. ASME J. of Heat Transfer 130 (2008) 1–6.

DOI: 10.1115/1.2818775

Google Scholar

[85] A.G.A Nnanna, Experimental model of temperature-driven nanofluid. J. of Heat Transfer-Transactions of the ASME 129 (2007) 697–704.

DOI: 10.1115/1.2717239

Google Scholar

[86] C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, Natural convection heat transfer of alumina- water nanofluid in vertical square enclosures: an experimental study. Int. J. of Thermal Sciences 49 (2010) 1345–1353.

DOI: 10.1016/j.ijthermalsci.2010.02.013

Google Scholar

[87] C.H. Li, G.P. Peterson, Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids), Advances in Mechanical Engineering 2010, Article ID: 742739.

DOI: 10.1155/2010/742739

Google Scholar

[88] Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui, Natural Convection in Nano- fluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int. J. of Ther. Sci. 57 (2012) 152–162.

DOI: 10.1016/j.ijthermalsci.2012.01.016

Google Scholar

[89] L.S. Tong, Y.S. Tang, Boiling heat transfer and two-phase flow, Taylor & Francis, 1997.

Google Scholar

[90] I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. I. Review of parametric effects of boiling surface. Int. J. of Heat & Mass Transfer 47 (2004) 5033–5044.

DOI: 10.1016/j.ijheatmasstransfer.2004.06.019

Google Scholar

[91] I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. II. Assessment of prediction methods. Int. J. of Heat & Mass Transfer 47 (2004) 5045–5057.

DOI: 10.1016/j.ijheatmasstransfer.2004.06.020

Google Scholar

[92] Y.M. Yang, J.R. Maa, Boiling of suspension of solid particles in water. Int. J. of Heat & Mass Transfer 27 (1984) 145–147.

DOI: 10.1016/0017-9310(84)90248-5

Google Scholar

[93] S.M. You, J.H. Kim, K.M. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling of heat transfer. Appl. Phys. Lett.83 (2003) 3374–3376.

DOI: 10.1063/1.1619206

Google Scholar

[94] D. Milanova, R. Kumar, Heat transfer behavior of silica nanoparticles in pool boiling experiment. J. of Heat Transfer 130 (042401) (2008) 1–6.

DOI: 10.1115/1.2787020

Google Scholar

[95] D. Wen, Y. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based γ -alumina nanofluids, J. of Nanoparticle Research 7 (2) (2005) 265–274.

DOI: 10.1007/s11051-005-3478-9

Google Scholar

[96] S. Witharana, Boiling of refrigerants on enhanced surfaces and boiling of nanofluids, PhD thesis, The Royal Institute of Technology, 2003.

Google Scholar

[97] P. Vassallo, R. Kumar, S. D'Amico, Pool boiling heat transfer experiments in silica–water nano-fluids. Int. J. of Heat & Mass Transfer 47 (2004) 407–11.

DOI: 10.1016/s0017-9310(03)00361-2

Google Scholar

[98] J.P. Tu, N. Dinh, T. Theofanous, An experimental study of nanofluid boiling heat transfer, in: Proceedings of 6th Int. Symposium on Heat Transfer, Beijing, China, 2004.

Google Scholar

[99] I.C. Bang, S.H. Chang, Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int. J. of Heat & Mass Transfer 48 (2005) 2407–2419.

DOI: 10.1016/j.ijheatmasstransfer.2004.12.047

Google Scholar

[100] C.T. Nguyen, N. Galanis, G. Roy, S. Divoux, D. Gilbert, Pool boiling characteristics of water-alumina nanofluids, 13th International Heat Transfer Conference, Sydney, 2006, NAN-02 (CD-ROM).

DOI: 10.1615/ihtc13.p8.20

Google Scholar

[101] K.J. Park, D. Jung, Boiling heat transfer enhancement with carbon nano-tubes for refrigerants used in building air-conditioning, Energy and Buildings 39 (2007) 1061–1064.

DOI: 10.1016/j.enbuild.2006.12.001

Google Scholar

[102] S.L. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. of Heat & Mass Transfer 50 (2007) 4105–16.

DOI: 10.1016/j.ijheatmasstransfer.2007.02.002

Google Scholar

[103] N.G. Prakash, K.B. Anoop, S.K. Das, Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticles suspensions over vertical tubes. J. of Applied Physics 102 (074317) (2007) 1–7.

DOI: 10.1063/1.2794731

Google Scholar

[104] M. Chopkar, A.K. Das, I. Manna, P.K. Das, Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool. Heat and Mass Transfer 44 (2008) 999–1004.

DOI: 10.1007/s00231-007-0345-5

Google Scholar

[105] Z.H. Liu, L. Liao, Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int. J. of Heat & Mass Transfer 51 (2008) 2593–602.

DOI: 10.1016/j.ijheatmasstransfer.2006.11.050

Google Scholar

[106] S. Soltani, S.G. Etemad, J. Thibault, Pool boiling heat transfer performance of Newtonian nanofluids. Heat and Mass Transfer 45 (2009) 1555–60.

DOI: 10.1007/s00231-009-0530-9

Google Scholar