p.139
p.151
p.165
p.175
p.197
p.217
p.243
p.257
p.271
Polymer Nanocomposites - Materials for Sensor Technology
Abstract:
Polymer nanocomposites are now a days an area of increasing scientific as well as technical interest. The addition of variable percents of nano sized materials creates change in their property (ies). Polymer nanocomposites exhibit superior properties as compared to micro- or macrocomposites. The improved combinations of electrical, mechanical and thermal properties of nanocomposites have resulted in major interest in various electronic applications. Polymer nanocomposites can be synthesized for various applications by proper selection of matrix, nano reinforcement material, synthesis method and surface modification of either the reinforcement or polymer (if required). Many polymer nanocomposites based products have been commercialized. This chapter has tried to highlight various types of polymer nanocomposites, their unique properties, various electronic applications for sensors with some specific examples. Though it is not a comprehensive one, this chapter could give a basic idea about polymer nanocomposites for sensor technology to a beginner.
Info:
Periodical:
Pages:
197-216
Citation:
Online since:
May 2013
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] J.J. Luo and I.M. Daniel, Characterization and Modeling of Mechanical Behavior of Polymer/Clay Nanocomposites, Compos. Sci. Technol. 63(2003)1607–1616.
[2] M.A. Scott, K.A. Carrado and P.K. Dutta (eds). Hand Book of Layered Materials, first ed., Marcel Dekker, New York, 2004.
[3] M. Alexandre and P. Dubois, Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials, Mater. Sci. Eng. Rep. 28 (2000)1–63.
[4] D.D.L. Chung, Low-density Graphite-polymer Electrical Conductors, US Patent 04,704, 231(1984).
[5] D.D.L. Chung, Composites of In-situ Exfoliated Graphite, US Patent, 4, 946, 892 (1990).
[6] Y.S. Wang, M.A. O'Gurkis and J.T. Lindt, Electrical Properties of Exfoliated-Graphite Filled Polyethylene Composites, Polym. Compos. 7 (1986) 349.
DOI: 10.1002/pc.750070512
[7] J.V. Foy and J.T. Lindt, Electrical Properties of Exfoliated-Graphite Filled Polyester Based Composites, Polym. Compos. 8 (1987) 419.
DOI: 10.1002/pc.750080608
[8] A. Celzerd, E. McRae, J.F. Mareche, G. Furdin, M. Dufort and C. Deleuze, Composites Based on Micron-Sized Exfoliated Graphite Particle: Electrical Conduction, Critical Exponents and Anisotropy, J. Phy. Chem. Solids 57(1996)715–718.
[9] A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi and O.J. Kamigaito, Swelling Behavior of Montmorillonite Cation Exchanged for V-amino Acids by E-caprolactam, Mater. Res. 8 (1993)1174.
[10] A. Rehab and N. Salahuddin, Nanocomposite Materials Based on Polyurethane Intercalated into Montmorillonite Clay, Materials Science and Engineering A 399 (2005) 368–376.
[11] L. Beron, Z. Wang and P T.J. Innavia, Polymer-layered Silicate Nanocomposites: An overview, Applied Clay Science 15 (1999)11–29.
[12] V. Halvatty and A. Oya, Intercalation of Methacrylamide into Sodium, Calcium and Alkylammonium Exchanged Montmorillonites, Appl. Clay Sci. 9 (1994) 199–210.
[13] F. Hussain, D. Dean and A. Haque, Structures and Characterization of Organoclay-Epoxy-Vinyl ester Nanocomposite, ASME International Mechanical Engineering Congress and Exposition, IMECE (2002) 2002-33552, LA, USA.
[14] H.R. Dennis, D. Hunter, D. Chang, S. Kim and D.R. Paul, Effect of Melt Processing Condition on the Extent of Exfoliation in Organoclay-based Nanocomposites, Polymer 42(2001) 9513–9522.
[15] R.A. Vaia, K.D. Jant, E.J. Kramer and E.P. Giannelis, Microstructural Evaluation of Melt-intercalated Polymer-Organically Modified Layered Silicate Nanocomposites, Chem. Mater. 8(1996) 2628–2635.
DOI: 10.1021/cm960102h
[16] S.D. Burnside and E.P. Giannelis, Synthesis and Properties of New Poly (dimethylsiloxane) Nanocomposites, Chem. Mater. 67 (1995).
[17] I.J. Chin, A.T. Thurn, H.C. Kim, T.P. Russel and J. Wang, On Exfoliation of Montmorillonite in Epoxy, Polymer 42(2001) 5947–5952.
[18] X. Kornmann, H. Linderberg and L.A. Bergund, Synthesis of Epoxy–Clay Nanocomposites: Influence of the Nature of the Clay on Structure, Polymer 42(2001)1303–1310.
[19] C. Chen, L. Cloos and B.P. Rice, Carbon Fiber Composites: Part I, SAMPE Journal (2001) 37.
[20] P.B. Messermith and E.P. Giannelis, Synthesis and Characterization of Layered Silicate Epoxy Nanocomposites, Chem. Mater. 6(1994) 1719–1725.
DOI: 10.1021/cm00046a026
[21] A. Haque, F. Hussain, D. Derrick, Shamsuzzoha, S2 Glass/Epoxy Polymer Nanocomposites: Manufacturing, Structures, Thermal and Mechanical Properties, Journal of Composites Materials 37 (2003) 1821-1837.
[22] W.B. Xu, S.P. Bao and P.S. He, Intercalation and Exfoliation Behavior of Epoxy Resin/Curing Agent/Montmorillonite Nanocomposite, Journal of Applied Polymer Science 84(2002) 842.
DOI: 10.1002/app.10354
[23] J. Koo, L. Pilato, Polymer Nanostructured Materials for High Temperature Applications, SAMPE Journal (2005) 41.
[24] J.A. Tetto, D.M. Steeves, E.A. Welsh and B.E. Powell, Proceedings, ANTEC (1999)1628.
[25] R. Magaraphan and A. Thuimthad, Polypyrrole-Organoclay Nanocomposites for Gas Sensors, Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, (Volume-1) Chapter-10 (2007) Composites and Interfaces 662-665.
[26] Y. Xin, L. Guanghan, W. Xiaogang, and Z. Tong, Studies on Electrochemical Behavior of Bromideat a Chitosan-Modified Glassy Carbon Electrode. Electroanalysis 13(2001) 923–926.
DOI: 10.1002/1521-4109(200107)13:11<923::aid-elan923>3.0.co;2-p
[27] G. Lu, X. Yao, X. Wu, T. Zhan, Determiantion of the Total Iron by Chitosan Modified Glassy Carbon Electrode. Microchem. J. 69 (2001) 81–87.
[28] M. Darder, M. Colilla and E. Ruiz-Hitzky, Chitosan–Clay Nanocomposites: Application as Electrochemical Sensors, Applied Clay Science 28(2005) 199–208.
[29] A. Maghear, A. Cernat, C. Cristea, A. Marian, I.O. Marian and R. Săndulescu, New Electrochemical Sensors Based on Clay and Carbon Micro and Nanoparticles for Pharmaceutical and Environmental Analysis, NSTI, Nanotechnology 2012: Advanced Materials, CNTs, Particles, Films and Composites (Volume 1), Chapter-6, Composite Materials 2012, pp.574-577.
[30] W.R. Caseri, Nanocomposites of Polymers and Inorganic Particles: Preparation, Structure and Properties, Mater. Sci. Tech. 22 (2006)807-817.
[31] R. Gangopadhyay and A. De, Conducting polymer nanocomposites: A brief Overview, Chem. Mater. 12 (2000) 608-622.
DOI: 10.1021/cm990537f
[32] F. Hussain, M. Hojjati, M. Okamoto, R. E. Gorga, Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing and Application: An Overview, Journal of Composite Materials 40 (2006)1511-1575.
[33] C.R. Martin, Review- Membrane –Based Synthesis of Nanomaterials, Chem Mater. 8(1996) 1739-1746.
[34] E. Ruiz -Hitzky, Conducting Polymers Intercalated in Layered Solids, Adv. Mater. 5 (1993)334-340.
[35] Y.C. Chen, S.X. Zhou, H.H. Yang and L.M. Wu, Structure and Properties of Polyurethane/Nanosilica Composites, Journal of Applied Polymer Science 95(2005) 1032–1039.
DOI: 10.1002/app.21180
[36] D. Yang, Nanocomposite Films for Gas Sensing, Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, Dr. B. Reddy (Ed.), InTech
[37] Y. Li, J. Gong, G. He, Y. Deng, Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application, Materials Chemistry and Physics, 129(2011), 477-482.
[38] N.G. Deshpande, Y.G. Gudage, R. Sharma, J.C. Vyas, J.B. Kim and Y.P. Lee, Studies on Tin Oxide-Intercalated Polyaniline Nanocomposite for Ammonia Gas Sensing Applications. Sensors Actuat. B: Chem. 138(2009)76-84.
[39] S. Sharma, C. Nirkhe, S. Pethkar and A.A. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite, Sensors Actuat. B: Chem. 85(2002)131-136.
[40] M.E. Azim-Araghi, M.J. Jafari, S. Barhemat and E. Karimi - Kerdabadi, Gas Mixture Sensor Based on Polyaniline-Chloroaluminium Phthalocyanine Nanocomposite Thin Films, Sensor Letters 9(2011)1349–1355.
DOI: 10.1166/sl.2011.1682
[41] A. Choudhury, P. Kar, M. Mukherjee and B. Adhikari, Polyaniline/Silver Nanocomposite Based Acetone Vapour Sensor, Sensor Lett. 7 (2009) 592-598.
DOI: 10.1166/sl.2009.1115
[42] I. Graz, M. Krause, S. Bauer-Gogonea, S. Bauer, S. P. Lacour, B. Ploss, M. Zirkl and B. Stadlober, S. Wagner, Flexible Active-matrix Cells with Selectively Poled Bifunctional Polymerceramic Nanocomposite for Pressure and Temperature Sensing Skin, J. Appl. Phys. 106 (2009) 034503-03458.
DOI: 10.1063/1.3191677
[43] X. Yan, G. Xie, X. Du, H. Tai, Y. Jiang, Preparation and Characterization of Polyaniline/Indium(III) Oxide (PANI/In2O3) Nanocomposite Thin Film. Proceedings of SPIE - The International Society for Optical Engineering. 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Vol. 7332(2009).
DOI: 10.1117/12.831026
[44] S. Arshad, M. M. Salleh and M. Yahaya, The performance of quartz crystal microbalance coated TiO2-Porphyrin Nanocomposite Thin Film Gas Sensors, Sensor Lett. 6(2008) 903-907.
DOI: 10.1166/sl.2008.526
[45] A. Tiwari, M. Prabaharan, R.R. Pandey and S. Li Vacuum-Deposited Thin Film of Aniline-Formaldehyde Condensate/WO3.nH2O Nanocomposite for NO2 Gas Sensor. Journal of Inorganic and Organometallic Polymers and Materials 20(2010) 380-386.
[46] D. Patil, P. Patil, Y.-K. Seo, Y. K. Hwang, Poly(o-anisidine)–Tin Oxide Nanocomposite: Synthesis, Characterization and Application to Humidity Sensing, Sensors Actuat. B: Chem. 148(2010) 41-48.
[47] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
DOI: 10.1038/354056a0
[48] M. Endo, T. Hayashi, Y. Ahm Kim, M. Terrones and M. S. Dresselhaus, Applications of carbon nanotubes in the twenty-first century, Phil. Trans. R. Soc. Lond. 362 (2004) 2223-2238.
[49] M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: pharmaceutical properties, Nanomedicine: Nanotechnology, Biology and Medicine 4(3) (2008) 173-182.
[50] C. Bower, R. Rosen, L. Jin, J. Han, O. Zhou, Deformation of Carbon Nanotubes in Nanotube-polymer Composites, Applied Physics Letters 74(1999) 3317–3319.
DOI: 10.1063/1.123330
[51] C.A. Cooper, D. Ravich, D. Lips, J. Mayer, H.D. Wagner, Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix, Composites Science and Technology, 62 (2002)1105–1112.
[52] R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned Single-wall Carbon Nanotubes in Composites by Melt Processing Methods, Chemical Physics Letters 330 (2000) 219–225.
[53] L. Jin, C. Bower, O. Zhou, Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching, Applied Physics Letters 73(1998)1197–1199.
DOI: 10.1063/1.122125
[54] Z. Jin, K.P. Pramoda, G. Xu, S.H. Goh, Dynamic Mechanical Behavior of Meltprocessed Multi-walled Carbon Nanotube/Poly (Methyl Methacrylate) Composites, Chemical Physics Letters 337(2001) 43–47.
[55] J.C. Kearns, R.L. Shambaugh, Polypropylene Fibers Reinforced with Carbon Nanotubes, Journal of Applied Polymer Science 86(2002) 2079–2084.
DOI: 10.1002/app.11160
[56] K. Lozano, E.V. Barrera, Nanofiber-reinforced Thermoplastic Composites. Thermo Analytical and Mechanical Analyses, Journal of Applied Polymer Science 79 (2001)125–133.
DOI: 10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d
[57] P. Potschke, T.D. Fornes, D.R. Paul, Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites, Polymer 43(2002) 3247–3255.
[58] B. Safadi, R. Andrews, E.A. Grulke, Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films, Journal of Applied Polymer Science 84 (2002) 2660–2669.
DOI: 10.1002/app.10436
[59] L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Load Transfer in Carbon Nanotube Epoxy Composites, Applied Physics Letters 73(1998) 3842–3844.
DOI: 10.1063/1.122911
[60] K.T. Lau, D. Hui, The Revolutionary Creation of New Advanced Materials carbon Nanotube Composites, Composites Part B 33(2002).263.
[61] D.S. Bethune, C.H. Klang, , M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls, Nature, 363(1993) 605–607.
DOI: 10.1038/363605a0
[62] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund (ed.). Science of Fullerences and Carbon Nanotubes, Academic Press: London, 1996.
[63] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, de La Chapelle, M. Lamy; S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Large-scale Production of Single-Walled Carbon Nanotubes by the Electric-arc Technique, Nature 388 (1997) 756 -758.
DOI: 10.1038/41972
[64] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science 273 (1996) 483-487.
[65] A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, Large-scale CVD synthesis of single walled carbon nanotubes, J. Phys. Chem. B 103 (1999), 6484.
DOI: 10.1021/jp990957s
[66] L. E. Foster, Nanotechnology Science, Innovation, and Opportunity, Pearson Education, 2007.
[67] P.M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite, Science 265 (1994) 1212-1214.
[68] L. Dai and A.W. H. Mau, Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials Adv. Mater. 13(2001) 899-913.
DOI: 10.1002/1521-4095(200107)13:12/13<899::aid-adma899>3.0.co;2-g
[69] R. H. Baughman, A. A. Zakhidov and W. A. Heer, Carbon Nanotubes-the Route toward Applications, Science 197 (2002)787-792.
[70] L. Dai, Advanced syntheses and microfabrications of conjugated polymers, C60-containing polymers and carbon nanotubes for optoelectronic applications, Polym. Adv. Technol. 10(1999) 357-420.
DOI: 10.1002/(sici)1099-1581(199907)10:7<357::aid-pat886>3.0.co;2-9
[71] G. Z. Chen, M.S.P .Shaffer, D. Coleby , G. Dioxan, W. Zhou, D.J. Fray, and A. H. Windle, Carbon Nanotube and Polypyrrole Composites: Coating and Doping, Adv. Mater. 12(2000) 522-526.
DOI: 10.1002/(sici)1521-4095(200004)12:7<522::aid-adma522>3.0.co;2-s
[72] Y. Saito, S. Uemura, and K. Hamaguchi, Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters, Jpn. J. Appl. Phys. 37, (1998) L346-L348.
DOI: 10.1143/jjap.37.l346
[73] S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A. B. Dalton, A.P. Davey, A. Drury, B. Mc Carthy, S. Maier, A. Strevens, A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics, Adv. Mater. 10(1998) 1091-1093.
DOI: 10.1002/(sici)1521-4095(199810)10:14<1091::aid-adma1091>3.0.co;2-l
[74] H. Ago, K. Petritch, M.S.P. Shaffer, A. H. Windle and R.H. Friend, Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices Adv. Mater. 11(1999) 1281-1285.
DOI: 10.1002/(sici)1521-4095(199910)11:15<1281::aid-adma1281>3.0.co;2-6
[75] A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angew. Chem. Ind. Ed. 41, 1853–1859, (2002)
DOI: 10.1002/1521-3773(20020603)41:11<1853::aid-anie1853>3.0.co;2-n
[76] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution Properties of Single-walled Carbon Nanotubes, Science 282 (1998) 95–98.
[77] C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of Functionalized Carbon Nanotubes in Polystyrene, Macromolecules 35(2002) 8825–8830.
DOI: 10.1021/ma020890y
[78] H. Bubert, S. Haiber, W. Brandl, G. Marginean, M. Heintze, V. Bruser, Characterization of the Uppermost Layer of Plasma-treated Carbon Nanotubes, Diamond and Related Materials 12(2003) 811–815.
[79] A. Eitan, K. Jiang, D. Dukes, R. Andrews, L.S. Schadler, Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites, Chemistry of Materials 15(2003) 3198–3201.
DOI: 10.1021/cm020975d
[80] J. Jang, J. Bae, S.H. Yoon, A Study on the Effect of Surface Treatment of Carbon Nanotubes for Liquid Crystalline Epoxide-carbon Nanotube Composites, Journal of Materials Chemistry 13(2003) 676–681.
DOI: 10.1039/b212190e
[81] R.E. Gorga, R.E. Cohen, Toughness Enhancements in Poly(methyl methacrylate) by Addition of Oriented Multiwall Carbon Nanotube, J. Polym. Sci., Part B: Polym. Phys. 42(2004) 2690–2702.
DOI: 10.1002/polb.20126
[82] A.R. Bhattacharyya, T.V. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Crystallization and Orientation Studies in Polypropylene/Single Wall Carbon Nanotube Composite, Polymer 44(2003) 2373–2377.
[83] P. Potschke, T.D. Fornes, D.R. Paul, Rheological Behaviors of Multiwalled Carbon Nanotube/Polycarbonate Composites, Polymer 43(2002) 3247–3255.
[84] E.J. Siochi, D.C. Working, C. Park, P.T. Lillehei, J.H. Rouse, C.C. Topping, A.R. Bhattacharyya, S. Kumar, Melt Processing of SWCNT-polyimide Nanocomposite Fibers, Composites Part B-Engineering 35(2004) 439–446.
[85] W.Z. Tang, M.H. Santare, S.G. Advani, Melt Processing and Mechanical Property Characterization of Multi-walled Carbon Nanotube/High Density Polyethylene (MWNT/ HDPE) Composite Films, Carbon 41(2003) 2779–2785.
[86] J. Broda, Polymorphism in Polypropylene Fibers, Journal of Applied Polymer Science 89(2003)3364–3370.
DOI: 10.1002/app.12570
[87] D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load Transfer and Deformation Mechanisms in Carbon Nanotube-polystyrene Composites, Appl. Phys. Lett. 76(2000) 2868–2870.
DOI: 10.1063/1.126500
[88] X. Gong, J. Liu, S. Baskaran, R.D. Voise, S. Young, Surfactant-assisted Processing of Carbon Nanotube/Polymer Composites, Chem. Mater. 12 (2000) 1049–1052.
DOI: 10.1021/cm9906396
[89] M.S.P. Shaffer, X. Fan, A.H. Windle, Load Transfer in Carbon Nanotube Epoxy Composites, Carbon 36(1998)1603–1612.
[90] Y.Z. Bin, M. Kitanaka, D. Zhu, M. Matsuo, Development of Highly Oriented Polyethylene Filled with Aligned Carbon Nanotubes by Gelation/Crystallization from Solutions, Macromolecules 36(2003) 6213–6219.
DOI: 10.1021/ma0301956
[91] W. Obitayo and T. Liu, A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors, Journal of Sensors (2012) 1-15.
DOI: 10.1155/2012/652438
[92] I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, A Carbon Nanotube Strain Sensor for Structural Health Monitoring, Smart Materials and Structures 15(2006) 737–748.
[93] G. T. Pham, A. Colombo, Y. B. Park, C. Zhang, and B. Wang, Nanotailored Thermoplastic/Carbon Nanotube Composite Strain Sensor, in Proceedings of the Multifunctional Nanocomposites International Conference, September (2006) 277–283.
DOI: 10.1115/mn2006-17079
[94] P. Wang, S. Geng and T. Ding, Effects of Carboxyl Radical on Electrical Resistance of Multi-Walled Carbon Nanotube Filled Silicone Rubber Composite under Pressure, Composites Science and Technology 70(2010) 1571–1573.
[95] K. Arshak, V. Velusamy, O. Korostynska, K. Oliwa-Stasiak, C. Adley, Conducting Polymers and Their Applications to Biosensors: Emphasizing on Food borne Pathogen Detection, IEEE Sensors Journal 9 (2009) 1942-1951.
[96] B. R. Azamian, J.J. Davis, K. S. Coleman, C. B. Bagshaw and M. L. H. Green, Bioelectrochemical Single-Walled Carbon Nanotubes, J. Am. Chem. Soc. 124(2002) 12664-12665.
DOI: 10.1021/ja0272989
[97] S. G. Wang, Q. Zhang, R. Wang, S. F .Yoon, J. Ahn, D. J. Yang, J. Z. Tian, J. Q. Li and Q. Zhou, Multi-walled Carbon Nanotubes for the Immobilization of Enzyme in Glucose Biosensors, Electrochem. Commun. 5(2003) 800-803.
[98] J. J. Davis, M. L. H. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier and S. C. Tsang, The Immobilisation of Proteins in Carbon Nanotubes, Inorg. Chim. Acta 272(1998) 261-266.
[99] G. Wang, J. J. Xu and H.Y. Chen, Interfacing Cytochrome c to Electrodes with a DNA – Carbon Nanotube Composite Film, Electrochem. Commun. 4(2002)506-509.
[100] C. Chai, J.Chen, Direct electron transfer and bio electrocatalysis of hemoglobin at a carbon nanotube electrode Anal. Biochem. 325(2004) 285-292.
[101] M. Gao, L .Dai, and G.G. Wallace, Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers, Electroanal. 15(2003) 1089-1094.
[102] H. Cai, Y. Xu, P. G. He, Y. Z. Fang, Indicator Free DNA Hybridization Detection by Impedance Measurement Based on the DNA-Doped Conducting Polymer Film Formed on the Carbon Nanotube Modified Electrode, Electroanal. 15(2003) 1864-1870.
[103] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube Molecular Wires as Chemical Sensors, Science 287 (2000) 622-625.
[104] P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science 287 (2000)1801-18-4.
[105] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection, Nano. Lett. 3(2003) 347-351.
DOI: 10.1021/nl034010k
[106] K. H. An, S.Y. Jeong, H. R. Hwang, Y. H. Lee, Enhanced Sensitivity of a Gas Sensor Incorporating Single-Walled Carbon Nanotube–Polypyrrole Nanocomposites, Adv. Mater. 16 (2004)1005-1009.
[107] L. Valentini, V. Bavastrello, E. Stura, I. Armentano, C. Nicolini, J. M. Kenny, Sensors for Inorganic Vapor Detection based on Carbon Nanotubes and Poly(o-anisidine) Nanocomposite Material, Chem. Phys. Lett. 383(2004) 617-622.
[108] V. Bavastrello, E. Stura, S. Carrara, V. Eroklin and C. Nicolini, Poly (2, 5-dimethylaniline)–MWNTs Nanocomposite: A New Material for Conductometric Acid Vapours Sensor, Sensors Actuat. B: Chem. 98(2004) 247-253.
[109] K. Jayaraman, Recent Advances in Polymer Nanofibers, Journal of Nanoscience and Nanotechnology (Review article) 4(2004) 52–65.
[110] C.R. Martin, Nanomaterials: A Membrane-based Synthetic Approach, Science 266(1994) 1961–1966.
[111] C.R. Martin, Membrane-based Synthesis of Nanomaterials, Chem. Mater. 8(1996) 1739.
[112] C.G. Wu, T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science 264(1994) 1757–1759.
[113] L. Larrondo, R. Manley, J. St, Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties, J. Polym. Sci. Polym. Phys. 19(1981) 909-920.
[114] L. Larrondo, R. Manley, J. St, Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet (1981). J. Polym. Sci. Polym. Phys. 19(1981) 921-932.
[115] L. Larrondo, R. Manley, J. St, Electrostatic Fiber Spinning from Polymer Melts. III. Electrostatic Deformation of a Pendant Drop of Polymer Melt, J. Polym. Sci. Polym. Phys. (1981) 933-940.
[116] H. Ju, X. Zhang, J. Wang, Carbon Nanofiber - Based Nanocomposites for Biosensing, Nano Biosensing, Biological and Medical Physics, Biomedical Engineering, Chapter-6, Springer New York, 2011, pp.147-170.
[117] V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon Nanofiber-Based Glucose Biosensor, Anal. Chem. 78(2006) 5538–5542.
DOI: 10.1021/ac060551t
[118] J. Jang, J. Bae, M. Choi, S.H. Yoon, Fabrication and Characterization of Polyaniline Coated Carbon Nanofiber for Supercapacitor, Carbon 43(2005) 2730–2736
[119] S. Wang, D. D. L. Chung and J. H. Chung, Self-sensing of Damage in Carbon Fiber Polymer–Matrix Composite Cylinder by Electrical Resistance Measurement, Journal of Intelligent Material Systems and Structures 17(2006) 57-62.
[120] F-Y. Chang, R-H. Wang, H. Yang, Y-H. Lin, T-M. Chen, S-J. Huang, Flexible Strain Sensors Fabricated with Carbon Nano-Tube and Carbon Nano-Fiber Composite Thin Films, Thin Solid Films, 518(2010) 7343-7347.
[121] G. D. O'Neil, R. Buiculescu, S. P. Kounaves and N. A. Chaniotakis, Carbon-Nanofiber-Based Nanocomposite Membrane as a Highly Stable Solid-State Junction for Reference Electrodes, Anal. Chem. 83(2011) 5749–5753.
DOI: 10.1021/ac201072u
[122] V. Vamvakaki, M. Hatzimarinaki and N. Chaniotakis, Biomimetically Synthesized Silica-Carbon Nanofiber Architectures for the Development of Highly Stable Electrochemical Biosensor Systems, Anal. Chem.80 (2008) 5970–5975.
DOI: 10.1021/ac800614j
[123] D. Yang, B. Chen, S. Nikumb, C. Chang, C.Lin, Surface plasmon resonance gas sensors using Au-WO3-x nanocomposite films. Proceedings - 2nd Int. Conf. Sensor Technol. Appl., Sensor Comm. 2008, August 25-31, 2008 - Cap Esterel, France.
[124] G. Korotcenkov, B.K. Cho, L. Gulina, and V. Tolstoy, SnO2 thin films modified by the SnO2-Au nanocomposites: Response to reducing gases, Sensors Actuat. B: Chem. 141(2009) 610-616.
[125] Angelopoulos, Conducting polymers in microelectronics, IBM J. Res. Develop. 45 (2001) 57–75.
[126] Terms and Definations in Industrial – Process Measurement and Control, (IEC draft 65/84), International Electrotechnical Committee, 1982.
[127] W. G. Wolber, K. D. Wise, Sensor Development in the Microcomputer Age, IEEE Transactions ED-26 (1979) 1864-1874.