Polymer Nanocomposites - Materials for Sensor Technology

Article Preview

Abstract:

Polymer nanocomposites are now a days an area of increasing scientific as well as technical interest. The addition of variable percents of nano sized materials creates change in their property (ies). Polymer nanocomposites exhibit superior properties as compared to micro- or macrocomposites. The improved combinations of electrical, mechanical and thermal properties of nanocomposites have resulted in major interest in various electronic applications. Polymer nanocomposites can be synthesized for various applications by proper selection of matrix, nano reinforcement material, synthesis method and surface modification of either the reinforcement or polymer (if required). Many polymer nanocomposites based products have been commercialized. This chapter has tried to highlight various types of polymer nanocomposites, their unique properties, various electronic applications for sensors with some specific examples. Though it is not a comprehensive one, this chapter could give a basic idea about polymer nanocomposites for sensor technology to a beginner.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-216

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J. Luo and I.M. Daniel, Characterization and Modeling of Mechanical Behavior of Polymer/Clay Nanocomposites, Compos. Sci. Technol. 63(2003)1607–1616.

Google Scholar

[2] M.A. Scott, K.A. Carrado and P.K. Dutta (eds). Hand Book of Layered Materials, first ed., Marcel Dekker, New York, 2004.

Google Scholar

[3] M. Alexandre and P. Dubois, Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials, Mater. Sci. Eng. Rep. 28 (2000)1–63.

DOI: 10.1016/s0927-796x(00)00012-7

Google Scholar

[4] D.D.L. Chung, Low-density Graphite-polymer Electrical Conductors, US Patent 04,704, 231(1984).

Google Scholar

[5] D.D.L. Chung, Composites of In-situ Exfoliated Graphite, US Patent, 4, 946, 892 (1990).

Google Scholar

[6] Y.S. Wang, M.A. O'Gurkis and J.T. Lindt, Electrical Properties of Exfoliated-Graphite Filled Polyethylene Composites, Polym. Compos. 7 (1986) 349.

DOI: 10.1002/pc.750070512

Google Scholar

[7] J.V. Foy and J.T. Lindt, Electrical Properties of Exfoliated-Graphite Filled Polyester Based Composites, Polym. Compos. 8 (1987) 419.

DOI: 10.1002/pc.750080608

Google Scholar

[8] A. Celzerd, E. McRae, J.F. Mareche, G. Furdin, M. Dufort and C. Deleuze, Composites Based on Micron-Sized Exfoliated Graphite Particle: Electrical Conduction, Critical Exponents and Anisotropy, J. Phy. Chem. Solids 57(1996)715–718.

DOI: 10.1016/0022-3697(95)00337-1

Google Scholar

[9] A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi and O.J. Kamigaito, Swelling Behavior of Montmorillonite Cation Exchanged for V-amino Acids by E-caprolactam, Mater. Res. 8 (1993)1174.

DOI: 10.1557/jmr.1993.1174

Google Scholar

[10] A. Rehab and N. Salahuddin, Nanocomposite Materials Based on Polyurethane Intercalated into Montmorillonite Clay, Materials Science and Engineering A 399 (2005) 368–376.

DOI: 10.1016/j.msea.2005.04.019

Google Scholar

[11] L. Beron, Z. Wang and P T.J. Innavia, Polymer-layered Silicate Nanocomposites: An overview, Applied Clay Science 15 (1999)11–29.

Google Scholar

[12] V. Halvatty and A. Oya, Intercalation of Methacrylamide into Sodium, Calcium and Alkylammonium Exchanged Montmorillonites, Appl. Clay Sci. 9 (1994) 199–210.

DOI: 10.1016/0169-1317(94)90020-5

Google Scholar

[13] F. Hussain, D. Dean and A. Haque, Structures and Characterization of Organoclay-Epoxy-Vinyl ester Nanocomposite, ASME International Mechanical Engineering Congress and Exposition, IMECE (2002) 2002-33552, LA, USA.

Google Scholar

[14] H.R. Dennis, D. Hunter, D. Chang, S. Kim and D.R. Paul, Effect of Melt Processing Condition on the Extent of Exfoliation in Organoclay-based Nanocomposites, Polymer 42(2001) 9513–9522.

DOI: 10.1016/s0032-3861(01)00473-6

Google Scholar

[15] R.A. Vaia, K.D. Jant, E.J. Kramer and E.P. Giannelis, Microstructural Evaluation of Melt-intercalated Polymer-Organically Modified Layered Silicate Nanocomposites, Chem. Mater. 8(1996) 2628–2635.

DOI: 10.1021/cm960102h

Google Scholar

[16] S.D. Burnside and E.P. Giannelis, Synthesis and Properties of New Poly (dimethylsiloxane) Nanocomposites, Chem. Mater. 67 (1995).

Google Scholar

[17] I.J. Chin, A.T. Thurn, H.C. Kim, T.P. Russel and J. Wang, On Exfoliation of Montmorillonite in Epoxy, Polymer 42(2001) 5947–5952.

DOI: 10.1016/s0032-3861(00)00898-3

Google Scholar

[18] X. Kornmann, H. Linderberg and L.A. Bergund, Synthesis of Epoxy–Clay Nanocomposites: Influence of the Nature of the Clay on Structure, Polymer 42(2001)1303–1310.

DOI: 10.1016/s0032-3861(00)00346-3

Google Scholar

[19] C. Chen, L. Cloos and B.P. Rice, Carbon Fiber Composites: Part I, SAMPE Journal (2001) 37.

Google Scholar

[20] P.B. Messermith and E.P. Giannelis, Synthesis and Characterization of Layered Silicate Epoxy Nanocomposites, Chem. Mater. 6(1994) 1719–1725.

DOI: 10.1021/cm00046a026

Google Scholar

[21] A. Haque, F. Hussain, D. Derrick, Shamsuzzoha, S2 Glass/Epoxy Polymer Nanocomposites: Manufacturing, Structures, Thermal and Mechanical Properties, Journal of Composites Materials 37 (2003) 1821-1837.

DOI: 10.1177/002199803035186

Google Scholar

[22] W.B. Xu, S.P. Bao and P.S. He, Intercalation and Exfoliation Behavior of Epoxy Resin/Curing Agent/Montmorillonite Nanocomposite, Journal of Applied Polymer Science 84(2002) 842.

DOI: 10.1002/app.10354

Google Scholar

[23] J. Koo, L. Pilato, Polymer Nanostructured Materials for High Temperature Applications, SAMPE Journal (2005) 41.

Google Scholar

[24] J.A. Tetto, D.M. Steeves, E.A. Welsh and B.E. Powell, Proceedings, ANTEC (1999)1628.

Google Scholar

[25] R. Magaraphan and A. Thuimthad, Polypyrrole-Organoclay Nanocomposites for Gas Sensors, Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, (Volume-1) Chapter-10 (2007) Composites and Interfaces 662-665.

Google Scholar

[26] Y. Xin, L. Guanghan, W. Xiaogang, and Z. Tong, Studies on Electrochemical Behavior of Bromideat a Chitosan-Modified Glassy Carbon Electrode. Electroanalysis 13(2001) 923–926.

DOI: 10.1002/1521-4109(200107)13:11<923::aid-elan923>3.0.co;2-p

Google Scholar

[27] G. Lu, X. Yao, X. Wu, T. Zhan, Determiantion of the Total Iron by Chitosan Modified Glassy Carbon Electrode. Microchem. J. 69 (2001) 81–87.

DOI: 10.1016/s0026-265x(01)00066-2

Google Scholar

[28] M. Darder, M. Colilla and E. Ruiz-Hitzky, Chitosan–Clay Nanocomposites: Application as Electrochemical Sensors, Applied Clay Science 28(2005) 199–208.

DOI: 10.1016/j.clay.2004.02.009

Google Scholar

[29] A. Maghear, A. Cernat, C. Cristea, A. Marian, I.O. Marian and R. Săndulescu, New Electrochemical Sensors Based on Clay and Carbon Micro and Nanoparticles for Pharmaceutical and Environmental Analysis, NSTI, Nanotechnology 2012: Advanced Materials, CNTs, Particles, Films and Composites (Volume 1), Chapter-6, Composite Materials 2012, pp.574-577.

Google Scholar

[30] W.R. Caseri, Nanocomposites of Polymers and Inorganic Particles: Preparation, Structure and Properties, Mater. Sci. Tech. 22 (2006)807-817.

DOI: 10.1179/174328406x101256

Google Scholar

[31] R. Gangopadhyay and A. De, Conducting polymer nanocomposites: A brief Overview, Chem. Mater. 12 (2000) 608-622.

DOI: 10.1021/cm990537f

Google Scholar

[32] F. Hussain, M. Hojjati, M. Okamoto, R. E. Gorga, Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing and Application: An Overview, Journal of Composite Materials 40 (2006)1511-1575.

DOI: 10.1177/0021998306067321

Google Scholar

[33] C.R. Martin, Review- Membrane –Based Synthesis of Nanomaterials, Chem Mater. 8(1996) 1739-1746.

Google Scholar

[34] E. Ruiz -Hitzky, Conducting Polymers Intercalated in Layered Solids, Adv. Mater. 5 (1993)334-340.

DOI: 10.1002/adma.19930050503

Google Scholar

[35] Y.C. Chen, S.X. Zhou, H.H. Yang and L.M. Wu, Structure and Properties of Polyurethane/Nanosilica Composites, Journal of Applied Polymer Science 95(2005) 1032–1039.

DOI: 10.1002/app.21180

Google Scholar

[36] D. Yang, Nanocomposite Films for Gas Sensing, Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, Dr. B. Reddy (Ed.), InTech

Google Scholar

[37] Y. Li, J. Gong, G. He, Y. Deng, Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application, Materials Chemistry and Physics, 129(2011), 477-482.

DOI: 10.1016/j.matchemphys.2011.04.045

Google Scholar

[38] N.G. Deshpande, Y.G. Gudage, R. Sharma, J.C. Vyas, J.B. Kim and Y.P. Lee, Studies on Tin Oxide-Intercalated Polyaniline Nanocomposite for Ammonia Gas Sensing Applications. Sensors Actuat. B: Chem. 138(2009)76-84.

DOI: 10.1016/j.snb.2009.02.012

Google Scholar

[39] S. Sharma, C. Nirkhe, S. Pethkar and A.A. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite, Sensors Actuat. B: Chem. 85(2002)131-136.

DOI: 10.1016/s0925-4005(02)00064-3

Google Scholar

[40] M.E. Azim-Araghi, M.J. Jafari, S. Barhemat and E. Karimi - Kerdabadi, Gas Mixture Sensor Based on Polyaniline-Chloroaluminium Phthalocyanine Nanocomposite Thin Films, Sensor Letters 9(2011)1349–1355.

DOI: 10.1166/sl.2011.1682

Google Scholar

[41] A. Choudhury, P. Kar, M. Mukherjee and B. Adhikari, Polyaniline/Silver Nanocomposite Based Acetone Vapour Sensor, Sensor Lett. 7 (2009) 592-598.

DOI: 10.1166/sl.2009.1115

Google Scholar

[42] I. Graz, M. Krause, S. Bauer-Gogonea, S. Bauer, S. P. Lacour, B. Ploss, M. Zirkl and B. Stadlober, S. Wagner, Flexible Active-matrix Cells with Selectively Poled Bifunctional Polymerceramic Nanocomposite for Pressure and Temperature Sensing Skin, J. Appl. Phys. 106 (2009) 034503-03458.

DOI: 10.1063/1.3191677

Google Scholar

[43] X. Yan, G. Xie, X. Du, H. Tai, Y. Jiang, Preparation and Characterization of Polyaniline/Indium(III) Oxide (PANI/In2O3) Nanocomposite Thin Film. Proceedings of SPIE - The International Society for Optical Engineering. 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Vol. 7332(2009).

DOI: 10.1117/12.831026

Google Scholar

[44] S. Arshad, M. M. Salleh and M. Yahaya, The performance of quartz crystal microbalance coated TiO2-Porphyrin Nanocomposite Thin Film Gas Sensors, Sensor Lett. 6(2008) 903-907.

DOI: 10.1166/sl.2008.526

Google Scholar

[45] A. Tiwari, M. Prabaharan, R.R. Pandey and S. Li Vacuum-Deposited Thin Film of Aniline-Formaldehyde Condensate/WO3.nH2O Nanocomposite for NO2 Gas Sensor. Journal of Inorganic and Organometallic Polymers and Materials 20(2010) 380-386.

DOI: 10.1007/s10904-010-9354-9

Google Scholar

[46] D. Patil, P. Patil, Y.-K. Seo, Y. K. Hwang, Poly(o-anisidine)–Tin Oxide Nanocomposite: Synthesis, Characterization and Application to Humidity Sensing, Sensors Actuat. B: Chem. 148(2010) 41-48.

DOI: 10.1016/j.snb.2010.04.046

Google Scholar

[47] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[48] M. Endo, T. Hayashi, Y. Ahm Kim, M. Terrones and M. S. Dresselhaus, Applications of carbon nanotubes in the twenty-first century, Phil. Trans. R. Soc. Lond. 362 (2004) 2223-2238.

DOI: 10.1098/rsta.2004.1437

Google Scholar

[49] M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: pharmaceutical properties, Nanomedicine: Nanotechnology, Biology and Medicine 4(3) (2008) 173-182.

DOI: 10.1016/j.nano.2008.04.002

Google Scholar

[50] C. Bower, R. Rosen, L. Jin, J. Han, O. Zhou, Deformation of Carbon Nanotubes in Nanotube-polymer Composites, Applied Physics Letters 74(1999) 3317–3319.

DOI: 10.1063/1.123330

Google Scholar

[51] C.A. Cooper, D. Ravich, D. Lips, J. Mayer, H.D. Wagner, Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix, Composites Science and Technology, 62 (2002)1105–1112.

DOI: 10.1016/s0266-3538(02)00056-8

Google Scholar

[52] R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned Single-wall Carbon Nanotubes in Composites by Melt Processing Methods, Chemical Physics Letters 330 (2000) 219–225.

DOI: 10.1016/s0009-2614(00)01013-7

Google Scholar

[53] L. Jin, C. Bower, O. Zhou, Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching, Applied Physics Letters 73(1998)1197–1199.

DOI: 10.1063/1.122125

Google Scholar

[54] Z. Jin, K.P. Pramoda, G. Xu, S.H. Goh, Dynamic Mechanical Behavior of Meltprocessed Multi-walled Carbon Nanotube/Poly (Methyl Methacrylate) Composites, Chemical Physics Letters 337(2001) 43–47.

DOI: 10.1016/s0009-2614(01)00186-5

Google Scholar

[55] J.C. Kearns, R.L. Shambaugh, Polypropylene Fibers Reinforced with Carbon Nanotubes, Journal of Applied Polymer Science 86(2002) 2079–2084.

DOI: 10.1002/app.11160

Google Scholar

[56] K. Lozano, E.V. Barrera, Nanofiber-reinforced Thermoplastic Composites. Thermo Analytical and Mechanical Analyses, Journal of Applied Polymer Science 79 (2001)125–133.

DOI: 10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d

Google Scholar

[57] P. Potschke, T.D. Fornes, D.R. Paul, Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites, Polymer 43(2002) 3247–3255.

DOI: 10.1016/s0032-3861(02)00151-9

Google Scholar

[58] B. Safadi, R. Andrews, E.A. Grulke, Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films, Journal of Applied Polymer Science 84 (2002) 2660–2669.

DOI: 10.1002/app.10436

Google Scholar

[59] L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Load Transfer in Carbon Nanotube Epoxy Composites, Applied Physics Letters 73(1998) 3842–3844.

DOI: 10.1063/1.122911

Google Scholar

[60] K.T. Lau, D. Hui, The Revolutionary Creation of New Advanced Materials carbon Nanotube Composites, Composites Part B 33(2002).263.

DOI: 10.1016/s1359-8368(02)00012-4

Google Scholar

[61] D.S. Bethune, C.H. Klang, , M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls, Nature, 363(1993) 605–607.

DOI: 10.1038/363605a0

Google Scholar

[62] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund (ed.). Science of Fullerences and Carbon Nanotubes, Academic Press: London, 1996.

Google Scholar

[63] C. Journet, W. K. Maser,  P. Bernier, A. Loiseau, de La Chapelle, M. Lamy; S. Lefrant, P. Deniard, R. Lee,  J. E. Fischer, Large-scale Production of Single-Walled Carbon Nanotubes by the Electric-arc Technique, Nature 388 (1997) 756 -758.

DOI: 10.1038/41972

Google Scholar

[64] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science 273 (1996) 483-487.

DOI: 10.1126/science.273.5274.483

Google Scholar

[65] A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, Large-scale CVD synthesis of single walled carbon nanotubes, J. Phys. Chem. B 103 (1999), 6484.

DOI: 10.1021/jp990957s

Google Scholar

[66] L. E. Foster, Nanotechnology Science, Innovation, and Opportunity, Pearson Education, 2007.

Google Scholar

[67] P.M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite, Science 265 (1994) 1212-1214.

DOI: 10.1126/science.265.5176.1212

Google Scholar

[68] L. Dai and A.W. H. Mau, Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials Adv. Mater. 13(2001) 899-913.

DOI: 10.1002/1521-4095(200107)13:12/13<899::aid-adma899>3.0.co;2-g

Google Scholar

[69] R. H. Baughman, A. A. Zakhidov and W. A. Heer, Carbon Nanotubes-the Route toward Applications, Science 197 (2002)787-792.

DOI: 10.1126/science.1060928

Google Scholar

[70] L. Dai, Advanced syntheses and microfabrications of conjugated polymers, C60-containing polymers and carbon nanotubes for optoelectronic applications, Polym. Adv. Technol. 10(1999) 357-420.

DOI: 10.1002/(sici)1099-1581(199907)10:7<357::aid-pat886>3.0.co;2-9

Google Scholar

[71] G. Z. Chen, M.S.P .Shaffer, D. Coleby , G. Dioxan, W. Zhou, D.J. Fray, and A. H. Windle, Carbon Nanotube and Polypyrrole Composites: Coating and Doping, Adv. Mater. 12(2000) 522-526.

DOI: 10.1002/(sici)1521-4095(200004)12:7<522::aid-adma522>3.0.co;2-s

Google Scholar

[72] Y. Saito, S. Uemura, and K. Hamaguchi, Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters, Jpn. J. Appl. Phys. 37, (1998) L346-L348.

DOI: 10.1143/jjap.37.l346

Google Scholar

[73] S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A. B. Dalton, A.P. Davey, A. Drury, B. Mc Carthy, S. Maier, A. Strevens, A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics, Adv. Mater. 10(1998) 1091-1093.

DOI: 10.1002/(sici)1521-4095(199810)10:14<1091::aid-adma1091>3.0.co;2-l

Google Scholar

[74] H. Ago, K. Petritch, M.S.P. Shaffer, A. H. Windle and R.H. Friend, Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices Adv. Mater. 11(1999) 1281-1285.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1281::aid-adma1281>3.0.co;2-6

Google Scholar

[75] A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angew. Chem. Ind. Ed. 41, 1853–1859, (2002)

DOI: 10.1002/1521-3773(20020603)41:11<1853::aid-anie1853>3.0.co;2-n

Google Scholar

[76] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution Properties of Single-walled Carbon Nanotubes, Science 282 (1998) 95–98.

DOI: 10.1126/science.282.5386.95

Google Scholar

[77] C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of Functionalized Carbon Nanotubes in Polystyrene, Macromolecules 35(2002) 8825–8830.

DOI: 10.1021/ma020890y

Google Scholar

[78] H. Bubert, S. Haiber, W. Brandl, G. Marginean, M. Heintze, V. Bruser, Characterization of the Uppermost Layer of Plasma-treated Carbon Nanotubes, Diamond and Related Materials 12(2003) 811–815.

DOI: 10.1016/s0925-9635(02)00353-9

Google Scholar

[79] A. Eitan, K. Jiang, D. Dukes, R. Andrews, L.S. Schadler, Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites, Chemistry of Materials 15(2003) 3198–3201.

DOI: 10.1021/cm020975d

Google Scholar

[80] J. Jang, J. Bae, S.H. Yoon, A Study on the Effect of Surface Treatment of Carbon Nanotubes for Liquid Crystalline Epoxide-carbon Nanotube Composites, Journal of Materials Chemistry 13(2003) 676–681.

DOI: 10.1039/b212190e

Google Scholar

[81] R.E. Gorga, R.E. Cohen, Toughness Enhancements in Poly(methyl methacrylate) by Addition of Oriented Multiwall Carbon Nanotube, J. Polym. Sci., Part B: Polym. Phys. 42(2004) 2690–2702.

DOI: 10.1002/polb.20126

Google Scholar

[82] A.R. Bhattacharyya, T.V. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Crystallization and Orientation Studies in Polypropylene/Single Wall Carbon Nanotube Composite, Polymer 44(2003) 2373–2377.

DOI: 10.1016/s0032-3861(03)00073-9

Google Scholar

[83] P. Potschke, T.D. Fornes, D.R. Paul, Rheological Behaviors of Multiwalled Carbon Nanotube/Polycarbonate Composites, Polymer 43(2002) 3247–3255.

DOI: 10.1016/s0032-3861(02)00151-9

Google Scholar

[84] E.J. Siochi, D.C. Working, C. Park, P.T. Lillehei, J.H. Rouse, C.C. Topping, A.R. Bhattacharyya, S. Kumar, Melt Processing of SWCNT-polyimide Nanocomposite Fibers, Composites Part B-Engineering 35(2004) 439–446.

DOI: 10.1016/j.compositesb.2003.09.007

Google Scholar

[85] W.Z. Tang, M.H. Santare, S.G. Advani, Melt Processing and Mechanical Property Characterization of Multi-walled Carbon Nanotube/High Density Polyethylene (MWNT/ HDPE) Composite Films, Carbon 41(2003) 2779–2785.

DOI: 10.1016/s0008-6223(03)00387-7

Google Scholar

[86] J. Broda, Polymorphism in Polypropylene Fibers, Journal of Applied Polymer Science 89(2003)3364–3370.

DOI: 10.1002/app.12570

Google Scholar

[87] D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load Transfer and Deformation Mechanisms in Carbon Nanotube-polystyrene Composites, Appl. Phys. Lett. 76(2000) 2868–2870.

DOI: 10.1063/1.126500

Google Scholar

[88] X. Gong, J. Liu, S. Baskaran, R.D. Voise, S. Young, Surfactant-assisted Processing of Carbon Nanotube/Polymer Composites, Chem. Mater. 12 (2000) 1049–1052.

DOI: 10.1021/cm9906396

Google Scholar

[89] M.S.P. Shaffer, X. Fan, A.H. Windle, Load Transfer in Carbon Nanotube Epoxy Composites, Carbon 36(1998)1603–1612.

Google Scholar

[90] Y.Z. Bin, M. Kitanaka, D. Zhu, M. Matsuo, Development of Highly Oriented Polyethylene Filled with Aligned Carbon Nanotubes by Gelation/Crystallization from Solutions, Macromolecules 36(2003) 6213–6219.

DOI: 10.1021/ma0301956

Google Scholar

[91] W. Obitayo and T. Liu, A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors, Journal of Sensors (2012) 1-15.

DOI: 10.1155/2012/652438

Google Scholar

[92] I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, A Carbon Nanotube Strain Sensor for Structural Health Monitoring, Smart Materials and Structures 15(2006) 737–748.

DOI: 10.1088/0964-1726/15/3/009

Google Scholar

[93] G. T. Pham, A. Colombo, Y. B. Park, C. Zhang, and B. Wang, Nanotailored Thermoplastic/Carbon Nanotube Composite Strain Sensor, in Proceedings of the Multifunctional Nanocomposites International Conference, September (2006) 277–283.

DOI: 10.1115/mn2006-17079

Google Scholar

[94] P. Wang, S. Geng and T. Ding, Effects of Carboxyl Radical on Electrical Resistance of Multi-Walled Carbon Nanotube Filled Silicone Rubber Composite under Pressure, Composites Science and Technology 70(2010) 1571–1573.

DOI: 10.1016/j.compscitech.2010.05.008

Google Scholar

[95] K. Arshak, V. Velusamy, O. Korostynska, K. Oliwa-Stasiak, C. Adley, Conducting Polymers and Their Applications to Biosensors: Emphasizing on Food borne Pathogen Detection, IEEE Sensors Journal 9 (2009) 1942-1951.

DOI: 10.1109/jsen.2009.2032052

Google Scholar

[96] B. R. Azamian, J.J. Davis, K. S. Coleman, C. B. Bagshaw and M. L. H. Green, Bioelectrochemical Single-Walled Carbon Nanotubes, J. Am. Chem. Soc. 124(2002) 12664-12665.

DOI: 10.1021/ja0272989

Google Scholar

[97] S. G. Wang, Q. Zhang, R. Wang, S. F .Yoon, J. Ahn, D. J. Yang, J. Z. Tian, J. Q. Li and Q. Zhou, Multi-walled Carbon Nanotubes for the Immobilization of Enzyme in Glucose Biosensors, Electrochem. Commun. 5(2003) 800-803.

DOI: 10.1016/j.elecom.2003.07.007

Google Scholar

[98] J. J. Davis, M. L. H. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier and S. C. Tsang, The Immobilisation of Proteins in Carbon Nanotubes, Inorg. Chim. Acta 272(1998) 261-266.

DOI: 10.1016/s0020-1693(97)05926-4

Google Scholar

[99] G. Wang, J. J. Xu and H.Y. Chen, Interfacing Cytochrome c to Electrodes with a DNA – Carbon Nanotube Composite Film, Electrochem. Commun. 4(2002)506-509.

DOI: 10.1016/s1388-2481(02)00360-0

Google Scholar

[100] C. Chai, J.Chen, Direct electron transfer and bio electrocatalysis of hemoglobin at a carbon nanotube electrode Anal. Biochem. 325(2004) 285-292.

Google Scholar

[101] M. Gao, L .Dai, and G.G. Wallace, Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers, Electroanal. 15(2003) 1089-1094.

DOI: 10.1002/elan.200390131

Google Scholar

[102] H. Cai, Y. Xu, P. G. He, Y. Z. Fang, Indicator Free DNA Hybridization Detection by Impedance Measurement Based on the DNA-Doped Conducting Polymer Film Formed on the Carbon Nanotube Modified Electrode, Electroanal. 15(2003) 1864-1870.

DOI: 10.1002/elan.200302755

Google Scholar

[103] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube Molecular Wires as Chemical Sensors, Science 287 (2000) 622-625.

DOI: 10.1126/science.287.5453.622

Google Scholar

[104] P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science 287 (2000)1801-18-4.

DOI: 10.1126/science.287.5459.1801

Google Scholar

[105] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection, Nano. Lett. 3(2003) 347-351.

DOI: 10.1021/nl034010k

Google Scholar

[106] K. H. An, S.Y. Jeong, H. R. Hwang, Y. H. Lee, Enhanced Sensitivity of a Gas Sensor Incorporating Single-Walled Carbon Nanotube–Polypyrrole Nanocomposites, Adv. Mater. 16 (2004)1005-1009.

DOI: 10.1002/adma.200306176

Google Scholar

[107] L. Valentini, V. Bavastrello, E. Stura, I. Armentano, C. Nicolini, J. M. Kenny, Sensors for Inorganic Vapor Detection based on Carbon Nanotubes and Poly(o-anisidine) Nanocomposite Material, Chem. Phys. Lett. 383(2004) 617-622.

DOI: 10.1016/j.cplett.2003.11.091

Google Scholar

[108] V. Bavastrello, E. Stura, S. Carrara, V. Eroklin and C. Nicolini, Poly (2, 5-dimethylaniline)–MWNTs Nanocomposite: A New Material for Conductometric Acid Vapours Sensor, Sensors Actuat. B: Chem. 98(2004) 247-253.

DOI: 10.1016/j.snb.2003.10.020

Google Scholar

[109] K. Jayaraman, Recent Advances in Polymer Nanofibers, Journal of Nanoscience and Nanotechnology (Review article) 4(2004) 52–65.

Google Scholar

[110] C.R. Martin, Nanomaterials: A Membrane-based Synthetic Approach, Science 266(1994) 1961–1966.

Google Scholar

[111] C.R. Martin, Membrane-based Synthesis of Nanomaterials, Chem. Mater. 8(1996) 1739.

Google Scholar

[112] C.G. Wu, T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science 264(1994) 1757–1759.

DOI: 10.1126/science.264.5166.1757

Google Scholar

[113] L. Larrondo, R. Manley, J. St, Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties, J. Polym. Sci. Polym. Phys. 19(1981) 909-920.

DOI: 10.1002/pol.1981.180190601

Google Scholar

[114] L. Larrondo, R. Manley, J. St, Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet (1981). J. Polym. Sci. Polym. Phys. 19(1981) 921-932.

DOI: 10.1002/pol.1981.180190602

Google Scholar

[115] L. Larrondo, R. Manley, J. St, Electrostatic Fiber Spinning from Polymer Melts. III. Electrostatic Deformation of a Pendant Drop of Polymer Melt, J. Polym. Sci. Polym. Phys. (1981) 933-940.

DOI: 10.1002/pol.1981.180190603

Google Scholar

[116] H. Ju, X. Zhang, J. Wang, Carbon Nanofiber - Based Nanocomposites for Biosensing, Nano Biosensing, Biological and Medical Physics, Biomedical Engineering, Chapter-6, Springer New York, 2011, pp.147-170.

DOI: 10.1007/978-1-4419-9622-0_5

Google Scholar

[117] V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon Nanofiber-Based Glucose Biosensor, Anal. Chem. 78(2006) 5538–5542.

DOI: 10.1021/ac060551t

Google Scholar

[118] J. Jang, J. Bae, M. Choi, S.H. Yoon, Fabrication and Characterization of Polyaniline Coated Carbon Nanofiber for Supercapacitor, Carbon 43(2005) 2730–2736

DOI: 10.1016/j.carbon.2005.05.039

Google Scholar

[119] S. Wang, D. D. L. Chung and J. H. Chung, Self-sensing of Damage in Carbon Fiber Polymer–Matrix Composite Cylinder by Electrical Resistance Measurement, Journal of Intelligent Material Systems and Structures 17(2006) 57-62.

DOI: 10.1177/1045389x06056072

Google Scholar

[120] F-Y. Chang, R-H. Wang, H. Yang, Y-H. Lin, T-M. Chen, S-J. Huang, Flexible Strain Sensors Fabricated with Carbon Nano-Tube and Carbon Nano-Fiber Composite Thin Films, Thin Solid Films, 518(2010) 7343-7347.

DOI: 10.1016/j.tsf.2010.04.108

Google Scholar

[121] G. D. O'Neil, R. Buiculescu, S. P. Kounaves and N. A. Chaniotakis, Carbon-Nanofiber-Based Nanocomposite Membrane as a Highly Stable Solid-State Junction for Reference Electrodes, Anal. Chem. 83(2011) 5749–5753.

DOI: 10.1021/ac201072u

Google Scholar

[122] V. Vamvakaki, M. Hatzimarinaki and N. Chaniotakis, Biomimetically Synthesized Silica-Carbon Nanofiber Architectures for the Development of Highly Stable Electrochemical Biosensor Systems, Anal. Chem.80 (2008) 5970–5975.

DOI: 10.1021/ac800614j

Google Scholar

[123] D. Yang, B. Chen, S. Nikumb, C. Chang, C.Lin, Surface plasmon resonance gas sensors using Au-WO3-x nanocomposite films. Proceedings - 2nd Int. Conf. Sensor Technol. Appl., Sensor Comm. 2008, August 25-31, 2008 - Cap Esterel, France.

DOI: 10.1109/sensorcomm.2008.29

Google Scholar

[124] G. Korotcenkov, B.K. Cho, L. Gulina, and V. Tolstoy, SnO2 thin films modified by the SnO2-Au nanocomposites: Response to reducing gases, Sensors Actuat. B: Chem. 141(2009) 610-616.

DOI: 10.1016/j.snb.2009.06.001

Google Scholar

[125] Angelopoulos, Conducting polymers in microelectronics, IBM J. Res. Develop. 45 (2001) 57–75.

Google Scholar

[126] Terms and Definations in Industrial – Process Measurement and Control, (IEC draft 65/84), International Electrotechnical Committee, 1982.

Google Scholar

[127] W. G. Wolber, K. D. Wise, Sensor Development in the Microcomputer Age, IEEE Transactions ED-26 (1979) 1864-1874.

DOI: 10.1109/t-ed.1979.19789

Google Scholar