Solution Combustion Synthesis: Role of Oxidant to Fuel Ratio on Powder Properties

Article Preview

Abstract:

Solution combustion synthesis technique is one of the novel techniques used to prepare nanoparticles, multi-component ceramic oxides and nanocomposites with properties better than conventionally prepared one and these materials have been used for various applications such as sensors, catalysts, and materials for solid oxide fuel cell (SOFCs). In the present work, the method has been used to prepare nanoparticles of 10 mol% Gd doped ceria (GDC) and Cu and its oxides. The oxidant to fuel (O/F) ratio is found to affect the powder properties and even compositional homogeneity. In glycine-nitrate combustion synthesis of GDC, as revealed by XRD studies, phase pure nanoparticles with crystallite size in the range 9-12nm were obtained for all the O/F ratios. TEM measurements of calcined powder showed hexagonal shaped particles of roughly 20nm size. The exothermicity was increased with the oxidant to fuel ratio resulting in high surface area and soft agglomerates. A slightly lean O/F ratio gives surface area of 73 m2/g and soft agglomerates (D50 = 5.34 mm), which eventually results into high sintering density at low temperature. Raman Spectra of GDC showed a sharp and intense peak at 467 cm1 which corresponds to CeO2 due to F2g symmetry of the cubic phase. In combustion synthesis of copper nitrate and citirc acid, the compositional homogenity and phase purity was affected by the oxidant to fuel ratio. The combustion at stoichiometric O/F ratio gives Cu nano particles, lean O/F ratio gives nanoparticles of Cu, CuO and Cu2O and rich ratio gives pure CuO nanoparticles. These nanoparticles have been studied with different characterization techniques like XRD, TG-DTA, SEM, TEM, FT-IR and Raman.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-98

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jadhav LD, Chourashiya MG, Subhedar KM, Tyagi AK, Patil JY, J. Alloys Compd. 2009; 470 : 383–386.

DOI: 10.1016/j.jallcom.2008.02.077

Google Scholar

[2] Jadhav LD, Chourashiya MG, Jamale AP, Chavan AU, Patil SP, J. Alloys Compd. 2010; 506: 739.

Google Scholar

[3] Saha S, Ghanawat SJ, Purohit RD. J Mater Sci 2006; 41: 1939–43.

Google Scholar

[4] Nair SR, Purohit RD, Tyagi AK, Sinha PK, Sharma BP. Mater Res Bull 2008; 43: 1572–82.

Google Scholar

[5] Patil KC, Aruna ST, Mimani T. Curr Opin Solid State Mater Sci 2002; 6: 507–12.

Google Scholar

[6] Sharma P., Lotey G., Singh S., Verma N.J. Nanoparticle Res., 2010, 13, (6), p.2553–2561.

Google Scholar

[7] Xu H., Yan H., Chen Z., J. Power Sources, 2006, 163, p.409–414.

Google Scholar

[8] Tyagi A., Chavan S., Purohit R., Ind. J. Pure Appl. Phys., 2006, 44, p.113–118.

Google Scholar

[9] Inaba H., Tagawa H., Solid State Ionics 1996; 83: 1.

Google Scholar

[10] Chourashiya MG, Patil JY, Pawar SH, Jadhav LD, Mater. Chem. Phys. 2008; 109: 39.

Google Scholar

[11] Chourashiya MG, Pawar SH, Jadhav LD, Applied Surface Science 2008; 254: 3431–3435.

DOI: 10.1016/j.apsusc.2007.11.032

Google Scholar

[12] Abdul H., Iskandar Y., Catal. Today 2004; 96: 165.

Google Scholar

[13] Fathi M., Bjorgum E., Rokstad OA, Catal. Lett. 2001; 72: 25.

Google Scholar

[14] Jasinski P., Suzuki T., Anderson HA, Sens. Actuators B 2003; 95: 73.

Google Scholar

[15] Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T., Solid State Ionics 2002; 151: 235.

Google Scholar

[16] Matta J., Courcot D., Abiaad E., Aboukays A., Chem. Mater. 2002;14: 4118.

Google Scholar

[17] DohcevicMitrovic ZD, GrujicBrojcin M., Scepanovic M., Popovic ZV, Boskovic S., Matovic B., Zinkevich M., Aldinger F., J. Phys.: Condens. Matter. 2006; 18: S2061.

Google Scholar

[18] Nakajima A., Yoshihara A., Ishigame M., Phys. Rev. B. 1994; 50: 13297.

Google Scholar

[19] Murillo A, Luyer CL, Garapon C., Dujardin C., Bernstein E., Pedrini C., J. Mugnier, Opt. Mater. 2002; 19: 161.

DOI: 10.1016/s0925-3467(01)00214-2

Google Scholar

[20] Kida T., Oka T., Nagano M., Ishiwata Y., Zheng X.,J. Am. Ceram. Soc., 2007, 90, (1), p.107–110

Google Scholar

[21] Zhang X.,Wang G., ZhangW., Hu N., Wu H., Fang B., J. Phys. Chem. C, 2008, 112, (24), p.8856–8862

Google Scholar

[22] Wang H., Pan Q., Zhao J., Yin G., Zuo P, J. Power Sources, 2007, 167, p.206–211

Google Scholar

[23] Fu L., Gao J., Zhang T., ET AL., J. Power Sources, 2007, 174, p.1197–1200

Google Scholar

[24] Hoa N., Quy N., Jung H., Kim D., Kim H., Hong S. Sens. Actuators B, 2010, 146, p.266–272

Google Scholar

[25] Zhu H., Wang J., Xu G., Cryst.Growth Des., 2009, 9, (1), p.633–638

Google Scholar

[26] Zhang H., Ren X., Cui Z., J. Cryst. Growth, 2007, 304, p.206–210

Google Scholar

[27] Jayatissa A., Samarasekara P., Kun G., Phys. Status Solidi A, 2009, 206, (2), p.332–337

Google Scholar

[28] Guan L., Pang H., Wang J., Lu Q., Yin J., Gao F, Chem. Commun., 2010, 46, p.7022–7024

Google Scholar