[1]
B. M. Reddy, M. K. Patil, Organic Syntheses and Transformations Catalyzed by Sulfated Zirconia, Chem. Rev. 109 (2009) 2185-2208.
DOI: 10.1021/cr900008m
Google Scholar
[2]
A. Feller, J. A. Lercher, Chemistry and Technology of Isobutane/Alkene Alkylation Catalyzed by Liquid and Solid Acids, Adv. Catal. 48 (2004) 229-295.
DOI: 10.1016/s0360-0564(04)48003-1
Google Scholar
[3]
B. M. Reddy, M. K. Patil, Promoted zirconia solid acid catalysts for organic synthesis, Curr. Org. Chem. 12 (2008) 118-140.
DOI: 10.2174/138527208783330019
Google Scholar
[4]
G. D. Yadav, J. J.Nair, Sulfated zirconia and its modified versions as promising catalysts for industrial processes, Microporous Mesoporous Mater. 33 (1999) 1-48.
DOI: 10.1016/s1387-1811(99)00147-x
Google Scholar
[5]
M. K. Patil, A. N. Prasad, B. M. Reddy, Zirconia-based solid acids: Green and heterogeneous catalysts for organic synthesis, Curr. Org. Chem.15 (2011) 3961-3985.
DOI: 10.2174/138527211798072430
Google Scholar
[6]
X. M. Song, A. Sayari, Sulfated Zirconia-Based Strong Solid-Acid Catalysts: Recent Progress, Catal. Rev. 38 (1996) 329-412.
DOI: 10.1080/01614949608006462
Google Scholar
[7]
A. Corma, Attempts to fill the gap between enzymatic, homogeneous, and heterogeneous catalysis, Catal. Rev. -Sci. Eng. 46 (2004) 369-417.
DOI: 10.1081/cr-200036732
Google Scholar
[8]
G. A. Olah, G. K. S. Prakash, J. Sommer, Superacids; John Wiley and Sons: New York, 1985.
Google Scholar
[9]
G. A. Olah, G. K. S. Prakash, J. Sommer, Superacids, Science 206 (1979) 13-20.
Google Scholar
[10]
K. Arata, Solid Superacids, Adv. Catal. 37 (1990) 165-211.
Google Scholar
[11]
B. H. Davis, R. A. Keogh, R. Srinivasan, Sulfated zirconia as a hydrocarbon conversion catalyst, Catal. Today 20 (1994) 219-256.
DOI: 10.1016/0920-5861(94)80004-9
Google Scholar
[12]
T. Yamaguchi, Recent progress in solid superacid, Appl. Catal. 61 (1990) 1-25.
Google Scholar
[13]
R. J. Gillespie, Fluorosulfuric acid and related superacid media, Acc. Chem. Res. 1 (1968) 202-209.
DOI: 10.1021/ar50007a002
Google Scholar
[14]
R. J. Gillespie, T. E. Peel, Superacid systems, Adv. Phys. Org. Chem. 9 (1971) 1-24.
Google Scholar
[15]
H. Matsuhashi, H. Nakamura, T. Ishihara, S. Iwamoto, Y. Kamiya, J. Kobayashi, Y. Kubota, T. Yamada, T. Matsuda, K. Matsushita, K. Nakai, H. Nishiguchi, M. Ogura, N., N. Okazaki, S. Sato, K. Shimizu, T. Shishido, S. Yamazoe, T. Takeguchi, K. Tomishige, H. Yamashita, M. Niwa, N. Katada, Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions, Appl. Catal. A: Gen. 360 (2009) 89-97.
DOI: 10.1016/j.apcata.2009.03.012
Google Scholar
[16]
C.-Y. Hsu, C. R. Heimbuch, C. T. Armes, B. C. Gates, A highly active solid superacid catalyst for n-butane isomerization: A sulfated oxide containing iron, manganese and zirconium, J. Chem. Soc., Chem. Commun. (1992) 1645-1646.
DOI: 10.1039/c39920001645
Google Scholar
[17]
E. Rubio, V. Rodriguez-Lugo, R. Rodriguez, V. M. Castano, Nano Zirconia and Sulfated Zirconia from Ammonia Zirconium Carbonate, Rev. Adv. Mater. Sci. 22 (2009) 67-73.
Google Scholar
[18]
A. Teimouri, A. N. Chermahini, An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nano-catalyst, J. Mol. Catal. A: Chem. 346 (2011) 39-45.
DOI: 10.1016/j.molcata.2011.06.007
Google Scholar
[19]
G. Boskovic, A. R. Zarubica, P. Putanov, Precursor affected properties of nanostructured sulfated zirconia: Morphological, textural and structural correlations, J. Optoelectro. Adv. Mater. 9 (2007) 2251-2257.
Google Scholar
[20]
B. Tyagi, M. K. Mishra, R. V. Jasra, Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst, J. Mol. Catal. A: Chem. 317 (2010) 41-45.
DOI: 10.1016/j.molcata.2009.10.019
Google Scholar
[21]
B. R. Vahid, N. Saghatoleslami, H. Nayebzadeh, A. Maskooki Preparation of nano-size Al-promoted sulfated zirconia and the impact of calcination temperature on its catalytic activity, Chem. Biochem. Eng. Q. 26 (2012) 71-77.
Google Scholar
[22]
R. Lloyd, T. W. Hansen, W. Ranke, F. C. Jentoft, R. Schlögl, Adsorption-desorption equilibrium investigations of n-butane on nanocrystalline sulfated zirconia thin films, Appl. Catal. A: Gen. 391 (2011) 215-224.
DOI: 10.1016/j.apcata.2010.06.028
Google Scholar
[23]
S. Yu, P. Jiang, Y. Dong, P. Zhang, Y. Zhang, W. Zhang, Hydrothermal Synthesis of Nanosized Sulfated Zirconia as an Efficient and Reusable Catalyst for Esterification of Acetic Acid with n-Butanol, Bull. Korean Chem. Soc. 33 (2012) 524-528.
DOI: 10.5012/bkcs.2012.33.2.524
Google Scholar
[24]
K. Saravanan, B. Tyagi, H. C. Bajaj, Synthesis of dypnone by solvent free self condensation of acetophenone over nano-crystalline sulfated zirconia catalyst, J. Sol-Gel Sci. Technol. 61 (2012) 275-280.
DOI: 10.1007/s10971-011-2624-3
Google Scholar
[25]
B. Tyagi, M. K. Mishra, R. V. Jasra, Synthesis and characterization of nano-crystalline sulfated zirconia by sol-gel method, J. Mol. Catal. A: Chem. 223 (2004) 61-65.
DOI: 10.1016/j.molcata.2003.09.040
Google Scholar
[26]
Y. Sun, S. Ma, Y. Du, L. Yuan, S. Wang, J. Yang, F. Deng, F.-S. Xiao, Solvent-Free Preparation of Nanosized Sulfated Zirconia with Brønsted Acidic Sites from a Simple Calcination, J. Phys. Chem. B 109 (2005) 2567-2572.
DOI: 10.1021/jp046335a
Google Scholar
[27]
R. Lloyd, T. W. Hansen, W. Ranke, F. C. Jentoft, R. Schlögl, Adsorption-desorption equilibrium investigations of n-butane on nanocrystalline sulfated zirconia thin films, Appl. Catal. A: Gen. 391 (2011) 215-224.
DOI: 10.1016/j.apcata.2010.06.028
Google Scholar
[28]
X. Li, K. Nagaoka, L. J. Simon, R. Olindo, J. A. Lercher, Mechanism of butane skeletal isomerization on sulfated zirconia, J. Catal. 232 (2005) 456-466.
DOI: 10.1016/j.jcat.2005.03.025
Google Scholar
[29]
X. Li, K. Nagaoka, J. A. Lercher, Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures, J. Catal. 227 (2004) 130-137.
DOI: 10.1016/j.jcat.2004.07.003
Google Scholar
[30]
T. Funamoto, T. Nakagawa, K. Segawa, Isomerization of n-butane over sulfated zirconia catalyst under supercritical conditions, Appl. Catal. A: Gen. 286 (2005) 79-84.
DOI: 10.1016/j.apcata.2005.03.005
Google Scholar
[31]
A. Corma, J. M. Serra, A. Chica, Discovery of new paraffin isomerization catalysts based on SO4 2-/ZrO2 and WOx/ZrO2 applying combinatorial techniques, Catal. Today 81(2003) 495-506.
DOI: 10.1016/s0920-5861(03)00148-2
Google Scholar
[32]
N. Essayem, Y. Ben Taarit, C. Feche, P. Y. Gayraud, G. Sapaly, C. Naccache, Comparative study of n-pentane isomerization over solid acid catalysts, heteropolyacid, sulfated zirconia, and mordenite: Dependence on hydrogen and platinum addition, J. Catal. 219 (2003) 97-106.
DOI: 10.1016/s0021-9517(03)00162-3
Google Scholar
[33]
S. Rezgui, R. E. Jentoft, B. C. Gates, n-pentane isomerization and disproportionation catalyzed by promoted and unpromoted sulfated zirconia, Catal. Lett. 51(1998) 229-234.
DOI: 10.1007/bf00813511
Google Scholar
[34]
V. Adeeva, H. -Y. Liu, B. -Q. Xu, W. M. H. Sachtler, Alkane isomerization over sulfated zirconia and other solid acids, Top. Catal. 6 (1998) 61-67.
DOI: 10.1002/chin.199848301
Google Scholar
[35]
B. M. Reddy, P. M. Sreekanth, P. Lakshmanan, Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions, J. Mol.Catal. A: Chem. 237 (2005) 93-100.
DOI: 10.1016/j.molcata.2005.04.039
Google Scholar
[36]
M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan, J. Thanusu, R. Govindaraju, M. R. Ezhilarasi, Microwave-promoted facile and rapid solvent-free synthesis procedure for the efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones using ZrO2/SO4 2- as a reusable heterogeneous catalyst, Lett. Org. Chem .3 (2006) 484-488.
DOI: 10.2174/157017806777828493
Google Scholar
[37]
D. Kumar, M. S. Sundaree, B. G. Mishra, Sulfated zirconia-catalyzed one-pot benign synthesis of 3,4-dihydropyrimidin-2(1H)-ones under microwave irradiation ,Chem. Lett. 35 (2006) 1074-1075.
DOI: 10.1246/cl.2006.1074
Google Scholar
[38]
B. M. Reddy, B. Thirupathi, M. K. Patil, Highly efficient promoted zirconia solid acid catalysts for synthesis of α-aminonitriles using trimethylsilyl cyanide, J. Mol. Catal. A: Chem. 307 (2009) 154-159.
DOI: 10.1016/j.molcata.2009.03.022
Google Scholar
[39]
B. Das, M. Krishnaiah, K. Laxminarayana, K. R. Reddy, A simple and efficient one-pot synthesis of β-acetamido carbonyl compounds using sulfated zirconia as a heterogeneous recyclable catalyst , J. Mol. Catal. A: Chem. 270 (2007) 284-288.
DOI: 10.1016/j.molcata.2007.02.014
Google Scholar
[40]
D. Angeles-Beltran, L. Lomas-Romero, V. H. Lara-Corona, E. Gonza-lez-Zamora, G. Negro´n-Silva, Sulfated zirconia-catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) under solvent less conditions: Competitive multicomponent Biginelli vs. Hantzsch reactions, Molecules 11 (2006) 731-738.
DOI: 10.3390/11100731
Google Scholar
[41]
B. M. Reddy, P. M. Sreekanth, An efficient zirconia catalyst for solvent free tetrahydropyranylation of alcohols and phenols, Syn. Commun. 32 (2002) 3561-3564.
DOI: 10.1081/scc-120014966
Google Scholar
[42]
C.-H. Lin, M.-Y. Wan, Y.-M. Huang, Methoxymethylation of alcohols catalyzed by sulfated metal oxides, Catal. Lett. 87 (2003) 253-256.
Google Scholar
[43]
N. Raju, Sulfated Zirconia: An Efficient Catalyst for the Synthesis of 1, 1-Diacetates from Aldehydes and Ketones, J. Chem. Res. (1996) 68.
Google Scholar
[44]
G. E. Negron, L. N. Palaciosa, D. Angelesa, L. Lomasb, R. Gavinoc, R. A mild and efficient method for the chemoselective synthesis of acylals from aromatic aldehydes and their deprotections catalyzed by sulfated zirconia, J. Braz. Chem. Soc. 16 (2005) 490-494.
DOI: 10.1590/s0103-50532005000300025
Google Scholar
[45]
D. E. Lopez, J. G. Goodwin Jr., D. A. Bruce, E. Lotero, Transesterification of triacetin with methanol on solid acid and base catalysts, Appl. Catal. A: Gen. 295 (2005) 97-105.
DOI: 10.1016/j.apcata.2005.07.055
Google Scholar
[46]
S. Z. M. Shamshuddin, N. Nagaraju, N. Transesterification: Salol synthesis over solid acids, Catal. Commun. 7 (2006) 593-599.
DOI: 10.1016/j.catcom.2006.01.019
Google Scholar
[47]
D. E. Lopez, J. G. Goodwin Jr., D. A. Bruce, S. Furuta, Esterification and transesterification using modified-zirconia catalysts, Appl. Catal. A: Gen. 339 (2008) 76-83.
DOI: 10.1016/j.apcata.2008.01.009
Google Scholar
[48]
B. Das, R. Ramu, B. Ravikanth, K. R. Reddy, Regioselective ring-opening of aziridines with potassium thiocyanate and thiols using sulfated zirconia as a heterogeneous recyclable catalyst, Tetrahedron Lett. 47 (2006) 779-782.
DOI: 10.1016/j.tetlet.2005.11.105
Google Scholar
[49]
B. Das, P. Thirupathi, R. A. Kumar, Sulfated zirconia as an efficient recyclable heterogeneous catalyst for selective aminolysis of epoxides and N-tosyl aziridines under solvent-free condition, Indian J. Heterocycl. Chem. 17 (2008) 339-342.
Google Scholar
[50]
B. M. Reddy, M. K. Patil, B. T. Reddy, S.-E. Park, Efficient synthesis of β-amino alcohols by regioselective ring-opening of epoxides with anilines catalyzed by sulfated zirconia under solvent-free conditions, Catal. Commun. 9 (2008) 950-954.
DOI: 10.1016/j.catcom.2007.09.029
Google Scholar
[51]
G. Negron-Silva, C. X. Hernandez-Reyes, D. Angeles-Beltran, L. Lomas-Romero, E. Gonzalez-Zamora, Microwave-enhanced sulphated zirconia and SZ/MCM-41 catalyzed regioselective synthesis of β-amino alcohols under solvent-free conditions, Molecules 13 (2008) 977-985.
DOI: 10.3390/molecules13040977
Google Scholar
[52]
B. Das, P. Thirupathi, R. A. Kumar, K. R. Reddy, Efficient synthesis of 3-alkyl indoles through regioselective ring opening of epoxides catalyzed by sulfated zirconia, Catal. Commun. 9 (2008) 635-638.
DOI: 10.1016/j.catcom.2007.07.004
Google Scholar
[53]
B. M. Reddy, P. M. Sreekanth, P. Lakshmanan, Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions, J. Mol.Catal. A: Chem. 237 (2005) 93-100.
DOI: 10.1016/j.molcata.2005.04.039
Google Scholar
[54]
B. M. Reddy, P. M. Sreekanth, An efficient synthesis of 1, 5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia, Tetrahedron Lett. 44 (2003) 4447-4449.
DOI: 10.1016/s0040-4039(03)01034-7
Google Scholar
[55]
G. D. Yadav, S. Sengupta, Friedel-Crafts alkylation of diphenyl oxide with benzyl chloride over sulphated zirconia, Org. Process Res. Dev. 6 (2002) 256-262.
DOI: 10.1021/op990099y
Google Scholar
[56]
G. D. Yadav, G. S. Pathre, Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene, J. Mol. Catal. A: Chem. 243 (2005) 77-84.
DOI: 10.1016/j.molcata.2005.08.024
Google Scholar
[57]
G. D. Yadav, P. Ramesh, Selectivity engineering in the O-versus C-alkylation of p-cresol with cyclohexene over sulfated zirconia, Can. J. Chem. Eng. 78 (2000) 917-927.
DOI: 10.1002/cjce.5450780509
Google Scholar
[58]
G. D. Yadav, M. S. M. M. Rahuman, Efficacy of solid acids in the synthesis of butylated hydroxy anisoles by alkylation of 4-methoxyphenol with MTBE, Appl. Catal. A: Gen. 253 (2003) 113-123.
DOI: 10.1016/s0926-860x(03)00474-5
Google Scholar
[59]
G. D. Yadav, T. S. Thorat, Kinetics of alkylation of p-cresol with isobutylene catalyzed by sulfated zirconia, Ind. Eng. Chem. Res. 35 (1996) 721-731.
DOI: 10.1021/ie940340r
Google Scholar
[60]
N. Katada, J.-i. Endo, K.-i. Notsu, N. Yasunobu, N. Naito, M. Niwa, Superacidity and catalytic activity of sulfated zirconia, J. Phys. Chem. B 104 (2000) 10321-10328.
DOI: 10.1021/jp002212o
Google Scholar
[61]
H. Nagai, K. Kawahara, S. Matsumura, K. Toshima, Novel stereocontrolled α- and β-glycosidations of mannopyranosyl sulfoxides using environmentally benign heterogeneous solid acids, Tetrahedron Lett. 42 (2001) 4159-4162.
DOI: 10.1016/s0040-4039(01)00674-8
Google Scholar
[62]
K. Toshima, K. Kasumi, S. Matsumura, Novel stereocontrolled glycosidations of 2-deoxyglucopyranosyl fluoride using a heterogeneous solid acid, sulfated zirconia (SO4/ZrO2), Synlett (1999) 813-815.
DOI: 10.1055/s-1999-2742
Google Scholar
[63]
K. Toshima, K. Kasumi, S. Matsumura, Novel stereocontrolled glycosidations using a solid acid, SO4/ZrO2, for direct syntheses of α- and β-mannopyranosides, Synlett (1998) 643-645.
DOI: 10.1055/s-1998-1741
Google Scholar
[64]
L. Grzona, N. Comelli, O. Masini, E. Ponzi, M. Ponzi, Liquid phase isomerization of α-pinene. Study of the reaction on sulfated ZrO2, React. Kinet. Catal. Lett. 69 (2000) 271-276.
DOI: 10.1023/a:1005643731718
Google Scholar
[65]
N. A. Comelli, E. N. Ponzi, M. I. Ponzi, α-Pinene isomerization to camphene: Effect of thermal treatment on sulfated zirconia, Chem. Eng. J. 117 (2006) 93-99.
DOI: 10.1016/j.cej.2005.08.006
Google Scholar
[66]
F. T. Sejidov, Y. Mansoori, N. J. Goodarzi, Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition, J. Mol. Catal. A: Chem. 240 (2005) 186-190.
DOI: 10.1016/j.molcata.2005.06.048
Google Scholar
[67]
S. Ardizzone, C. L. Bianchi, G. Cappelletti, and F. Porta, Liquid-phase catalytic activity of sulfated zirconia from sol-gel precursors: The role of the surface features, J. Catal. 227 (2004) 470-478.
DOI: 10.1016/j.jcat.2004.07.030
Google Scholar
[68]
B. M. Reddy, M. K. Patil, K. N. Rao, G. K. Reddy, An easy-to-use heterogeneous promoted zirconia catalyst for Knoevenagel condensation in liquid phase under solvent-free conditions, J. Mol. Catal. A: Chem. 258 (2006) 302-307.
DOI: 10.1016/j.molcata.2006.05.065
Google Scholar
[69]
B. M. Reddy, M. K. Patil, B. T. Reddy, An efficient protocol for Aza-michael addition reactions under solvent-free condition employing sulfated zirconia catalyst, Catal. Lett. 126 (2008) 413-418.
DOI: 10.1007/s10562-008-9646-7
Google Scholar
[70]
A. Wali, S. M. Pillai, Cyclodehydration of some 1, n-diols catalysed by sulfated zirconia, J. Chem. Res. (1999) 326-327.
DOI: 10.1039/a807189f
Google Scholar
[71]
J. C. Rodriguez-Dominguez, G. Kirsch, Sulfated zirconia, a mild alternative to mineral acids in the synthesis of hydroxycoumarins, Tetrahedron Lett. 47 (2006) 3279-3281.
DOI: 10.1016/j.tetlet.2006.03.030
Google Scholar
[72]
B. Thirupathi, A. N. Prasad, R. Srinivas, B. M. Reddy, Sulfated zirconia: An efficient catalyst for solvent-free synthesis of silyl ethers under mild conditions, Synth. Commun., 41 (2011) 2064-2072.
DOI: 10.1080/00397911.2010.497591
Google Scholar
[73]
J.G. Lambardino, E.H. Wiseman, Preparation and anti-inflammatory activity of some non acidic trisubstituted imidazoles, J. Med. Chem. 17 (1974) 1182-1188.
DOI: 10.1021/jm00257a011
Google Scholar
[74]
A. Puratchikody, M. Doble, Antinociceptive and anti-inflammatory activities and QSAR studies on 2-substituted-4, 5-diphenyl-1H-imidazoles, Bioorg. Med. Chem. Lett. 15 (2007) 1083-1090.
DOI: 10.1016/j.bmc.2006.10.025
Google Scholar
[75]
K. Saravanan, B. Tyagi, H. C. Bajaj, Esterification of caprylic acid with alcohol over nano-crystalline sulfated zirconia, J. Sol-Gel Sci. Technol. 62 (2012) 13-17.
DOI: 10.1007/s10971-011-2671-9
Google Scholar
[76]
B. Tyagi, M. K. Mishra, R. V. Jasra, Solvent free isomerisation of longifolene with nano-crystalline sulphated zirconia, Catal. Commun. 7 (2006) 52-57.
DOI: 10.1016/j.catcom.2005.08.012
Google Scholar
[77]
A. Teimouri, A. N. Chermahini, One-pot Green Synthesis of Pyrrole Derivatives Catalyzed by Nano Sulfated Zirconia as a Solid Acid Catalyst, Chin. J. Chem. 30 (2012) 372-376.
DOI: 10.1002/cjoc.201100143
Google Scholar
[78]
B. M. Reddy, M. K. Patil, P. Lakshmanan, Sulfated CexZr1−xO2 solid acid catalyst for solvent free synthesis of coumarins, J. Mol. Catal. A: Chem. 256 (2006) 290-294.
DOI: 10.1016/j.molcata.2006.05.001
Google Scholar
[79]
B. M. Reddy, B. Thirupathi, M. K. Patil, One-Pot Synthesis of Substituted Coumarins Catalyzed by Silica Gel Supported Sulfuric Acid Under Solvent-Free Conditions, The Open Catal. J. 2 (2009) 33-39.
DOI: 10.2174/1876214x00902010033
Google Scholar
[80]
B. Tyagi, M. K. Mishra, R. V. Jasra, Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia, J. Mol. Catal. A: Chem. 276 (2007) 47-56.
DOI: 10.1016/j.molcata.2007.06.003
Google Scholar
[81]
A. Teimouri, A. N. Chermahini, A mild and highly efficient Friedländer synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst, Arab. J. Chem. (2011)
DOI: 10.1016/j.arabjc.2011.05.018
Google Scholar
[82]
Y. Sun, L. Zhu, H. Lu, R. Wang, S. Lin, D. Jiang, F.-S. Xiao, Sulfated zirconia supported in mesoporous materials, Appl. Catal. A: Gen. 237 (2002) 21-31.
DOI: 10.1016/s0926-860x(02)00133-3
Google Scholar