[1]
F. Convert, B. Miege, The Control of Geometrical Sources of Error in X-Ray Diffraction Applied to Stress Analysis, J. Appl. Cryst. 25 (1992) 384-390.
DOI: 10.1107/s002188989101422x
Google Scholar
[2]
A.C. Vermeulen, E. Houtman, Determination of Alignment Errors in Classical XRD Residual Stress Methods. Measurement, Accuracy and Correction, Mat. Science Forum, 347-349 (2000) 17-22.
DOI: 10.4028/www.scientific.net/msf.347-349.17
Google Scholar
[3]
A.C. Vermeulen, Instrumental Aberrations in a 4-Circle Powder Diffractometer, Z. Kristallogr., 222 (2007) 204-209.
Google Scholar
[4]
A.C. Vermeulen, Considerations for Collecting Reliable Residual Stress Data Across the Full 2Theta Range, Adv. in X-Ray Analysis 49 (2006) 133-142.
Google Scholar
[5]
A.C. Vermeulen, Accurate Absolute Peak Positions for Multiple {hkl} Residual Stress Anal-ysis by Means of Misalignment Corrections, Z. Kristallogr., Suppl. 23 (2006) 49-54.
DOI: 10.1524/zksu.2006.suppl_23.49
Google Scholar
[6]
V.M. Hauk, E. Macherauch, A Useful Guide for X-Ray Stress Evaluation (XSE), Advances in X-ray analysis, 27 (1983) 81-99.
DOI: 10.1154/s0376030800016992
Google Scholar
[7]
WikipediA, The Free Encyclopedia, http: /www/wikipedia. org, Weibull distribution, http: /en. wikipedia. org/wiki/Weibull_distribution.
Google Scholar
[8]
WikipediA, The Free Encyclopedia, http: /www/wikipedia. org, Cumulative distribution function, http: /en. wikipedia. org/wiki/Cumulative_distribution_function.
Google Scholar
[9]
Commercial documentation, PANalytical, The Netherlands, www. panalytical. com.
Google Scholar