Sensitivity of Macro- and Micro-Residual Stress States of Steel Surfaces to Thermal Influences Caused by Grinding Burn and Laser Treatments

Article Preview

Abstract:

Thermal influences, introduced intentionally or unintentionally do have significant effects on surfaces of steel components. Materials properties are reduced by annealing effects or even re-hardening zones can occur. Grinding, one of the most important technological processes for preci-sion manufacturing of hardened steel components, is an important source of thermal influences to steel surfaces. In pronounced cases, these influences are referred to as grinding burn. They are known as possible reasons for gray stains as well as development of cracks and pittings on heavy-duty gears and on roller bearings. The basic effect of thermal influences on the material is a change of the macro- and micro-residual stress states. Therefore, the knowledge of these residual stress states is of fundamental importance. The paper treats the mechanisms of grinding which can lead to thermal influences. Some characteristic appearances of grinding burn are shown and characterized by X-ray macro- and micro residual stress determinations. It is shown that defined laser treatments can be used to create reproducible thermal influences similar to grinding burn. Their effects are also characterized by X-ray residual stress measurements. The sensitivities of X-ray and metallographical investigations are compared. Defined laser traces are proposed as calibration samples for magnetic and eddy current measurements which allow to determine threshold values for the actual apparatus and measuring problem.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

412-419

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Macherauch, H. Wohlfahrt, U. Wolfstieg, Zur zweckmäßigen Definition von Eigenspannungen, HTM 28 (1973) 201-211.

DOI: 10.1515/htm-1973-280305

Google Scholar

[2] B. Eigenmann, E. Macherauch, Röntgenographische Untersuchung von Spannungszuständen in Werkstoffen, Mat. -wiss. u. Werkstofftech., Teil I: 26 (1995) 148-160, Teil II: 26 (1995) 199-216, Teil III: 27 (1996) 426-437, Teil IV: 27 (1996) 491-501.

DOI: 10.1002/mawe.19960271010

Google Scholar

[3] H. -G. Wobker, Schleifen keramischer Werkstoffe, Fortschr. -Ber. VDI Reihe 2, Nr. 237, VDI, (1992).

Google Scholar

[4] H.K. Tönshoff, T. Lierse, H. -G. Wobker, Randzonenbeeinflussung und Trennmechanismen beim Schleifen von Al2O3, Werkstattstechnik 5 (1995) 219-223.

Google Scholar

[5] B. Scholtes, Eigenspannungen in mechanisch randschichtverformten Werkstoffzuständen - Ursachen, Ermittlung und Bewertung, DGM Informationsgesellschaft mbH, Oberursel, (1991).

DOI: 10.1002/mawe.19910221203

Google Scholar

[6] U. Wolfstieg, Das Ψ-Diffraktometer, HTM 31 (1976) 19-22.

Google Scholar

[7] U. Wolfstieg, Die Symmetrisierung unsymmetrischer Interferenzlinien mit Hilfe von Spezialblenden, HTM 31 (1976) 23.

Google Scholar

[8] E. Macherauch, P. Müller, Das sin²ψ-Verfahren der röntgenographischen Spannungsmessung, Z. angew. Physik 13 (1961) 305-312.

Google Scholar

[9] W. Voigt, Lehrbuch der Kristallphysik, Teubner-Verlag, Berlin, (1928).

Google Scholar

[10] A. Reuss, Berechnung der Fließgrenze von Mischkristallen aufgrund der Plastizitätsbedingung für Einkristalle, Z. für angew. Math. und Mech. 9 (1929) 49-58.

DOI: 10.1002/zamm.19290090104

Google Scholar