[1]
P. Lequeu, K.P. Smith, A. Daniélou, Aluminum-Copper-Lithium Alloy 2050 developed for medium to thick plate, J. Mater. Eng. Perform. 19 (2009) 841-847.
DOI: 10.1007/s11665-009-9554-z
Google Scholar
[2]
Wei-Ming Sim, Challenges of residual stress and part distortion in the civil airframe industry, Int. J. Microstructure and Materials Properties 5 (2010) 446-455.
DOI: 10.1504/ijmmp.2010.037621
Google Scholar
[3]
S. Ratchev, E. Govender, and S. Nikov, Force and deflection modeling in milling of low-rigidity complex parts, Journal of Materials Processing Technology 143-144 (2003) 796-801.
DOI: 10.1016/s0924-0136(03)00382-0
Google Scholar
[4]
C.K. Wang, G.H. Qin, D. Lu and S.Q. Xin, Simulation and experimental investigation for the end milling process of 7075-T7451 Aluminium alloy, Adv. Mater. Res. 97-101 (2010) 3014-3019.
DOI: 10.4028/www.scientific.net/amr.97-101.3014
Google Scholar
[5]
Z.T. Tang, Z.Q. Liu, Y. Wan, X. Ai, Study on residual stresses in milling aluminium alloy 7050-T7451, Advanced Design and Manufacture to Gain a Competitive Edge, Chapter 2 (2008) 169-178.
DOI: 10.1007/978-1-84800-241-8_18
Google Scholar
[6]
S.P. Wang, S. Padmanaban, A new approach for FEM simulation of NC machining processes, AIP Conf. Proc. 712 (2004) 1371-1376.
Google Scholar
[7]
L. Yuanweia, Numerical simulation of the machining distortion of aircraft aluminium part caused by redistribution of residual stress, Adv. Mater. Res. 142 (2011) 122-125.
DOI: 10.4028/www.scientific.net/amr.142.122
Google Scholar
[8]
K. Ma, R. Goetz, S.K. Srivatsa, Modeling of residual stress and machining distortion in aerospace components, ASM Handbook, Metals Process Simulation 22B (2010) 386-407.
DOI: 10.31399/asm.hb.v22b.a0005537
Google Scholar
[9]
S. Hassini, A. Vissio, H. Chanal, E. Duc, (In French) Influence of cutting parameters on post machining distortions of 2050 aluminium alloy, submitted for the 7ème Assises MUGV (2012).
Google Scholar
[10]
F. Valiorgue, J. Rech, H. Hamdi, P. Gilles, J.M. Bergheau, A new approach for the modelling of residual stresses induced by turning of 316L, J. Mater. Process. Tech. 191 (2007) 270-273.
DOI: 10.1016/j.jmatprotec.2007.03.021
Google Scholar
[11]
Y.B. Bi, H.Y. Dong, Q.L. Cheng et Y.L. Ke, Distortion prediction of aerospace monolithic components due to milling process, Key Engineering Materials 392-394 (2009) 841-847.
DOI: 10.4028/www.scientific.net/kem.392-394.841
Google Scholar
[12]
W. Bai, R. Hu, X. Zhu, Finite element simulation and analysis of part deformation induced during milling of thin-walled aerospace monolithic structure parts, Intelligent Computing and Intelligent Systems (ICIS), IEEE International Conference. Vol. 2 (2010).
DOI: 10.1109/icicisys.2010.5658315
Google Scholar