Synchrotron Diffraction Study of the Cementite Phase in Cold Drawn Pearlitic Steel Wires

Article Preview

Abstract:

Energy dispersive synchrotron diffraction has been carried out on cold drawn pearlitic steel wires. In this paper the observed cementite peaks are analysed. For a broad range of true drawing strains sin²(Ψ) curves have been measured. The residual stress in the cementite is found to saturate after reaching a maximum at a strain of about 1.6. No indication of significant texture development in the cementite could be observed. An explanation is given in terms of possible physical mechanisms. Peak broadening was observed at the early stages of deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

380-387

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.F. Hosford Jr., Trans. Metall. Soc. AIME 230 (1964) 12-15.

Google Scholar

[2] G. Langford, Metallurgical Trans. A 8 (1977) 861-875.

Google Scholar

[3] J. Gil Sevillano, Journal de Physique III 1 (1991) 967-988.

Google Scholar

[4] J. Gil Sevillano, A twist on heavily drawn wires, Mordica Lecture, Wire Expo (2010).

Google Scholar

[5] V.N. Gridnev, V.G. Gavrilyuk, Physics of Metals 4 (1982) 531-551.

Google Scholar

[6] X. Sauvage, J. Copreaux, F. Danoix, D. Blavette, Philosophical Magazine A 80 (2000) 781-796.

DOI: 10.1080/01418610008212082

Google Scholar

[7] J. Languillaume, G. Kapelski, B. Baudelet, Acta Mater. 45 (1997) 1201-1212.

Google Scholar

[8] H.G. Read, W.T. Reynolds Jr., K. Hono, T. Tarui, Scripta Mater. 37 (1997) 1221-1230.

Google Scholar

[9] Y.J. Li, P. Choi, C. Borchers, S. Westkamp, S. Goto, D. Raabe, R. Kirchheim, Acta Mater. 59 (2011) 3965-3977.

DOI: 10.1016/j.actamat.2011.03.022

Google Scholar

[10] M. Nikolussi, S.L. Shang, T. Gressmann, A. Leineweber, E.J. Mittemeijer, Y. Wang, Z. -K. Liub, Scripta Mater. 59 (2008) 814-817.

DOI: 10.1016/j.scriptamat.2008.06.015

Google Scholar

[11] J. Alkorta, J. Gil Sevillano, Journal of Materials Research 27 (2011) 45-52.

Google Scholar

[12] J. Gil Sevillano, Mater. Sci. Eng. 21 (1975) 221-225.

Google Scholar

[13] W.C. Chiou Jr., E.A. Carter, Surface Science 530 (2003) 87-100.

Google Scholar

[14] M. Kriška, J. Tacq, M. Seefeldt, In these proceedings.

Google Scholar

[15] Ch. Genzel, I.A. Denks, J. Gibmeier, M. Klaus, G. Wagener, Nucl. Instrum. Methods in Phys. Res. A 578 (2007) 23-33.

Google Scholar

[16] M. Seefeldt, M. Kriška, J. Tacq, In these proceedings.

Google Scholar

[17] M.A. Weisser, A.D. Evans, S. Van Petegem, S.R. Holdsworth, H. Van Swygenhoven, Acta Mater. 59 (2011) 4448-4457.

DOI: 10.1016/j.actamat.2011.03.068

Google Scholar

[18] D.F. Rendle, Journal of Forensic Sciences 26 (1981) 343-351.

Google Scholar

[19] E.C. Oliver, M.R. Daymond, P.J. Withers, Acta Mater. 52 (2004) 1937-(1951).

Google Scholar

[20] T. Hanabusa, J. Fukura, H. Fujiwara, JSME 12 (1969) 931-939.

Google Scholar

[21] K. Van Acker, J. Root, P. Van Houtte, E. Aernoudt, Acta Mater. 44 (1996) 4039-4049.

DOI: 10.1016/s1359-6454(96)00051-1

Google Scholar

[22] A. Walentek, X. Hu, M. Seefeldt, P. Van Houtte, Materials Science Forum 495-497 (2005) 369-374.

DOI: 10.4028/www.scientific.net/msf.495-497.369

Google Scholar

[23] S. Goto, R. Kirchheim, T. Al-Kassab, C. Borchers, Trans. Nonferrous Met. Soc. China 17 (2007) 1129-1138.

DOI: 10.1016/s1003-6326(07)60238-6

Google Scholar