[1]
A. Ohta, O. Watanabe, K. Matsuoka, C. Siga, S. Nishijima, Y. Maeda, N. Suzuki, T. Kubo, Fatigue Strength improvement by using newly developed low transformation temperature welding material, Weld. World 43 (1999) 38-42.
DOI: 10.1080/09507110009549271
Google Scholar
[2]
F. Martinez Diez, Development of Compressive Residual Stress in Structural Steel Weld Toes by Means of Weld Metal Phase Transformations, Weld. World 52 (2008) 63-78.
DOI: 10.1007/bf03266655
Google Scholar
[3]
W. Wang, L. Huo, Y. Zhang, D. Wang, H. Jing, New developed welding electrode for improving the fatigue strength of welded joints, J. Mater. Sci. Technol. 18 (2002) 527-531.
Google Scholar
[4]
Z. Barsoum, M. Gustafsson, Fatigue of high strength steel joints welded with low temperature transformation consumables, Engineering Failure Analysis 16 (2009) 2186-2194.
DOI: 10.1016/j.engfailanal.2009.02.013
Google Scholar
[5]
H. Lixing, W. Dongpo, W. Wenxian, Z. Yufeng, Ultrasonic Peening and Low Transformation Temperature Electrodes used for improving the Fatigue Strength of Welded Joints, Weld. World 48 (2004) 26-31.
DOI: 10.1007/bf03266425
Google Scholar
[6]
Y. Mikami, Y. Morikage, M. Mochizuki, M. Toyoda, Angular distortion of fillet welded T joint using low transformation temperature welding wire, Sci. Technol. Weld. Join. 14 (2009) 97-105.
DOI: 10.1179/136217108x382972
Google Scholar
[7]
A. A. Shirzadi, H. K. D. H. Bhadeshia, L. Karlsson, P.J. Withers, Stainless steel weld metal designed to mitigate residual stresses', Sci. Technol. Weld. Join. 14 (2009) 559-565.
DOI: 10.1179/136217109x437178
Google Scholar
[8]
H. Dai, J.A. Francis, H.J. Stone, H.K.D.H. Bhadeshia, P.J. Withers, Characterizing Phase Transformations and Their Effect on Ferritic Weld Residual Stresses with X-rays and Neutrons, Metall. Mater. Trans. A 39A (2008) 3070-3078.
DOI: 10.1007/s11661-008-9616-0
Google Scholar
[9]
A. Kromm, T. Kannengiesser, J. Gibmeier, In-situ Observation of Phase Transformations during Welding of Low Transformation Temperature Filler Material, Mater. Sci. Forum, 638-642 (2010) 3769-3774.
DOI: 10.4028/www.scientific.net/msf.638-642.3769
Google Scholar
[10]
C. Shiga, H.Y. Yasuda, K. Hiraoka, H. Suzuki, Effect of Ms temperature on the residual stress in welded joints of high-strength steels, Weld. World 54 (2010) 71-79.
DOI: 10.1007/bf03263490
Google Scholar
[11]
J. Altenkirch, J. Gibmeier, A. Kromm, T. Kannengiesser, T. Nitschke-Pagel, M. Hofmann, In situ study of structural integrity of low transformation temperature (LTT)-welds, Mater. Sci. Engineering A 528 (2011) 5566-5575.
DOI: 10.1016/j.msea.2011.03.091
Google Scholar
[12]
A. Kromm, T. Kannengiesser, J. Altenkirch, J. Gibmeier, Residual Stresses in Multilayer Welds with Different Martensitic Transformation Temperatures Analyzed by High-Energy Synchrotron Diffraction, Mater. Sci. Forum 681 (2011) 37-42.
DOI: 10.4028/www.scientific.net/msf.681.37
Google Scholar
[13]
T. Lausch, T. Kannengiesser, Multi-axial load analysis of thick-walled component welds made of 13CrMoV9-10, J. Mater. Process. Tech. (2013) http: /dx. doi. org/10. 1016/j. jmatprotec. 2013. 01. 008.
DOI: 10.1016/j.jmatprotec.2013.01.008
Google Scholar
[14]
T. Nitschke-Pagel, H. Wohlfahrt, Residual stresses in welded joints - sources and consequences, Mater. Sci. Forum 404-407 (2002) 215-226.
DOI: 10.4028/www.scientific.net/msf.404-407.215
Google Scholar
[15]
W.K.C. Jones, P.J. Alberry, A model for stress accumulation in steels during welding, in: Proc. Int. Conf. on Residual stresses in welded construction and their effects, London, 15-17 November 1977, Volume 1 – papers, The Welding Institute, Abington Hall, Abington, Cambridge, 1977, paper 2, pp.15-26.
Google Scholar
[16]
A. A. Shirzadi, H. K. D. H. Bhadeshia, Accumulation of stress in constrained assemblies: novel Satoh test configuration, Sci. Technol. Weld. Join. 15 (2010) 497-499.
DOI: 10.1179/136217110x12731414739998
Google Scholar