[1]
K. Kumar, S.V. Kailas, The role of friction stir welding tool on material flow and weld formation. Mater. Sci. & Eng. A. 485 (2008) 367-374.
DOI: 10.1016/j.msea.2007.08.013
Google Scholar
[2]
W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, Friction Welding. Cambridge, UK: The Welding Institute TWI Patent Application No 91259788 (1991).
Google Scholar
[3]
M.M. Shtrikman, Current state and development of friction stir welding Part 3, Weld. Inter. 22 (2008) 806-815.
DOI: 10.1080/09507110802593620
Google Scholar
[4]
M. Nourani, A. S. Milani, S. Yannacopoulos, Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: a review and case study, Eng. 3 (2011) 144-155.
DOI: 10.4236/eng.2011.32017
Google Scholar
[5]
W. Woo, H. Choo, D.W. Brown, Z. Feng, P.K. Liaw, Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy, Mater. Sci. Eng. A. 437 (2006) 64-69.
DOI: 10.1016/j.msea.2006.04.066
Google Scholar
[6]
X. Qin, P. Michaleris, Thermo-elasto-viscoplastic modelling of friction stir welding, Sci Tech Weld Join. 14 (2009) 640-649.
DOI: 10.1179/136217109x12464549883457
Google Scholar
[7]
Z. Feng, X.L. Wang, S.A. David, P.S. Sklad, Modeling of residual stress and property distribution in friction stir welds of aluminium ally 6061-T6, J. Sci. Technol. Weld. Join. 12 (2007), 348-356.
DOI: 10.1179/174329307x197610
Google Scholar
[8]
P. A. Colegrove, H. R. Shercliffa, 3-Dimensional CFD Modelling of flow round a threaded friction stir welding tool profile, J. Mater. Process. Technol. 169 (2005) 320-327.
DOI: 10.1016/j.jmatprotec.2005.03.015
Google Scholar
[9]
H.K. Versteeg, W. Malalasekera,. An Introduction to Computational Fluid Dynamics the Finite Volume Method, Longman Scientific & Technical, New York, (1995).
Google Scholar
[10]
M. Nourani, A.S. Milani, S. Yannacopoulos,. A new approach to measure stain during friction stir welding using visioplasticity, Proc of ASME Conference, Denver, (2011) 1-7.
DOI: 10.1115/imece2011-62061
Google Scholar
[11]
S. Xu, X. Deng, A study of texture patterns in friction stir welds. Acta Materialia. 56 (2008) 1326-1341.
DOI: 10.1016/j.actamat.2007.11.016
Google Scholar
[12]
H. Atharifar, D. Lin, R. Kovacevic, Numerical and experimental investigations on the loads carried by the tool during friction stir welding, J Mater Eng Perform. 18 (2009) 339-350.
DOI: 10.1007/s11665-008-9298-1
Google Scholar
[13]
R. Lewis, P. Nithiarasu, K. Seetharamu,. Fundamentals of the Finite Element Method for Heat and Fluid Flow, John Wiley & Sons Ltd, New York, (2004).
DOI: 10.1002/0470014164
Google Scholar
[14]
J.H. Hattel, H. Schmidt, C. Tutum,. Thermomechanical modelling of friction stir welding. Trends in Welding Research, Proceedings of the 8th International Conference, ASM, Stan A. David Ed., (2009) 1-10.
Google Scholar
[15]
C.M. Sellars, W.J.M. Tegart, On the mechanism of hot deformation, Acta Metall. 14 (1966) 1136-1138.
Google Scholar
[16]
T. Sheppard, D. Wright, Determination of flow stress: Part 1 constitutive equation for aluminum alloys at elevated temperatures, Met. Technol. 6 (1979) 215-223.
DOI: 10.1179/030716979803276264
Google Scholar
[17]
P.A. Colegrove, H.R. Shercliff, R. Zettler, Model for predicting heat generation and temperature in friction stir welding from the material properties, Sci Tech Weld Join. 12 (2007) 284-298.
DOI: 10.1179/174329307x197539
Google Scholar
[18]
K. Tello, A. Gerlich, P. Mendez, Constants for hot deformation constitutive models for recent experimental data, Sci Tech Weld Join. 15 (2010) 260-266.
DOI: 10.1179/136217110x12665778348380
Google Scholar
[19]
M. Nourani, A. S. Milani, S. Yannacopoulos, and C. Yan, An integrated multiphysics model for friction stir welding of 6061 Aluminum alloy, submitted to Sci Tech Weld Join. (2012).
DOI: 10.1260/1750-9548.8.1.29
Google Scholar
[20]
T. Long, A.P. Reynolds, Parametric studies of friction stir welding by commercial fluid dynamics simulation, Sci Tech Weld Join. 11 (2006) 200-209.
DOI: 10.1179/174329306x85985
Google Scholar
[21]
M. Riahi, H. Nazari,. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Inter. J. Adv. Manuf. Tech. 55 (2011) 143-152.
DOI: 10.1007/s00170-010-3038-z
Google Scholar
[22]
J. Simo, T. Hughes, Computational Inelasticity, Springer-Verlag, New York, (1998).
Google Scholar
[23]
W. Woo, Z. Feng, X.L. Wang, D.W. Brown, B. Clausen, K. An, H. Choo, C.R. Hubbard, S.A. David, In situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminium alloy, Sci Tech Weld Join. 12 (2007).
DOI: 10.1179/174329307x197548
Google Scholar
[24]
X.L. Wang, Z. Feng, S.A. David, S. Spooner, C.R. Hubbard, Neutron diffraction study of residual stresses in friction stir welds. In: Sixth international conference on residual stresses. IOM Comunications, London, (2000) 1408-1414.
DOI: 10.2172/672109
Google Scholar
[25]
C. Gallais, A. Simar, D. Fabregue, A. Denquin, G. Lapasset, Multiscale analysis of the strength and ductility of AA 6056 aluminum friction stir welds, Metall. Mater. Trans. A. 38A (2007) 964-981.
DOI: 10.1007/s11661-007-9121-x
Google Scholar