Electrochemical Study of Diffusion Bonded Joints between Micro-Duplex Stainless Steel and Ti6Al4V Alloy

Article Preview

Abstract:

In the present study, corrosion behavior of a diffusion bonded interface formed between micro-duplex stainless steel (MDSS) and a mixed titanium alloy (Ti6Al4V) formed at 900°C for 60 minutes under 4MPa uniaxial pressure in vacuum has been investigated in 1M HCl and 1 M NaOH solutions using various electrochemical measurements such as Equilibrium Potential (EP), Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Polarization (PD). For comparison, corrosion behavior of base metal alloys, MDSS and Ti6Al4V have also been also characterized. Bonded interface has been characterized in light optical microscopy and scanning electron microscopy using back scattered electron. The layer wise σ phase and λ+FeTi phase mixture has been observed at the bond interface and the bond tensile strength and shear strength were ~556.4MPa and ~420.2MPa, respectively. The corrosion rates of the bonded joint are intermediate to the corrosion rates of MDSS and Ti6Al4V alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2250-2259

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Orhan, T. I. Khan, M. Eroglu, Diffusion bonding of a microduplex stainless steel to Ti–6Al–4V, Scripta Metar Vol. 45 (2001), 441-446.

DOI: 10.1016/s1359-6462(01)01041-7

Google Scholar

[2] M. Ferrante, E. V. Pigoretti, Diffusion bonding of Ti-6Al-4V To AISI 316L stainless steel: mechanical resistanceand interface microstructure, J Mater Sci Vol. 37 (2002), 2825–2833.

Google Scholar

[3] U. K. Mudali, B. M. AnandaRao, K. Shanmugam , R. Natarajan, B. Raj, Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel, J Nucl Mater Vol. 321 (2003) 40–48.

DOI: 10.1016/s0022-3115(03)00194-6

Google Scholar

[4] C. C. Liu, C. L. Ou, R. K. Shiue, The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys, J Mater Sci Vol. 37 (2002), 2225–2235.

Google Scholar

[5] P. He, J. H. Zhang, X. Q. Li, Diffusion bonding of titanium alloy to stainless steel wire mesh, Mater Sci Technol Vol. 17 (2001), 1158-1162.

DOI: 10.1179/026708301101511112

Google Scholar

[6] B. Kurt, N. Orhan, M. Kaya, Interface characterisation of diffusion bonded Ti–6Al–4V alloy and austenitic stainless steel couple, Mater Sci Technol Vol. 25 (2009), 556-560.

DOI: 10.1179/174328408x311107

Google Scholar

[7] P. Villars, A. Prince, H. Okamoto, Hand book of Ternary Phase Alloys, ASM Int., Mater. Park, Ohio Vol. 7 (1995), 8903-8928.

Google Scholar

[8] S. Kundu, S. Chatterjee, Interfacial microstructure and mechanical properties of diffusion-bonded titanium–stainless steel joints using a nickel interlayer, Mater Sci Eng Vol. 425A (2006), 107-113.

DOI: 10.1016/j.msea.2006.03.034

Google Scholar

[9] X. J. Yuan, G. M. Sheng, B. Qin, W. Z. Huang, B. Zhou, Impulse pressuring diffusion bonding of titanium alloy to stainless steel, Mater Charact Vol. 59 (2008), 930–936.

DOI: 10.1016/j.matchar.2007.08.003

Google Scholar

[10] B. Aleman, I. Guitierrez, J. J. Urcola, The use of kirkendall effect for calculating intrinsic diffusion coefficients in a 316L/Ti6242 diffusion bonded couple, Scripta Metar Vol. 36 (1997), 509-515.

DOI: 10.1016/s1359-6462(96)00414-9

Google Scholar

[11] M. Eroglu, T. I. Khan, N. Orhan, Diffusion bonding between Ti-6Al-4V alloy and microduplex stainless steel with copper interlayer, Mater Sci Technol Vol. 18 (2002), 68-72.

DOI: 10.1179/026708301125000230

Google Scholar

[12] B. M. AnandaRao, K. Shanmugam, U. K. Mudali, A. K. Bhaduri, K. Balachander, R. Natarajan, Proceedings of the International Welding Conference IWC-99, IIW and CII, New Delhi, (1999), 959-965.

Google Scholar

[13] H. Irie, Press Release, National Institute of Materials Science, Tsukuba, Japan, (1996), 1-3.

Google Scholar

[14] S. M. Bhola, R. Bhola, B. Mishra, D. L. Olson, Povidone-iodine as a corrosion inhibitor towards a low modulus beta Ti-45Nb implant alloy in a simulated body fluid, J Mater Sci: Mater in Medicine Vol. 22 (2011), 773-779.

DOI: 10.1007/s10856-011-4268-9

Google Scholar

[15] S. M. Bhola, R. Bhola, B. Mishra, D. L. Olson, Electrochemical impedance spectroscopic characterization of the oxide film formed over low modulus Ti-35. 5Nb-7. 3Zr-5. 7Ta alloy in phosphate buffer saline at various potentials, J Mater Sci Vol. 45 (2010).

DOI: 10.1007/s10853-010-4711-1

Google Scholar

[16] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, London: Pergamon Press Ltd. (1966).

Google Scholar

[17] J. Beddoes, G. J. Parr, Stainless Steels, 3rd Ed., ASM International, Materials Park, OH (1999).

Google Scholar

[18] S. M. Bhola, R. Bhola, L. Jain, B. Mishra, D. L. Olson, Corrosion Behavior of Mild Carbon Steel in Ethanolic Solutions, J Mater Eng Perfor Vol. 20 (2010), 409-416.

DOI: 10.1007/s11665-010-9692-3

Google Scholar

[19] R. Bhola, S. M. Bhola, B. Mishra, D. L. Olson, Effect of povidone iodine addition on the corrosion behavior of cp-Ti in normal saline, J Mater Sci Mater in Medicine Vol. 21 (2010), 1413-1420.

DOI: 10.1007/s10856-010-4001-0

Google Scholar

[20] Schmidt, M. Anelise, Azambuja, D. Schermann, Corrosion behavior of Ti and TI6Al4V in citrate buffers containing fluoride ions, Mater Resch Vol. 13 (2010), 45-50.

DOI: 10.1590/s1516-14392010000100011

Google Scholar

[21] Y. X. Qiao, Y. G. Zheng, W. Ke, P.C. Okafor, Electrochemical Behavior of High Nitrogen Stainless Steel in Acidic Solutions, Corro Sci Vol. 51 (2009) 979-986.

DOI: 10.1016/j.corsci.2009.02.026

Google Scholar

[22] C. M. Abreu, M. J. Cristobal, R. Losada, X. R. Novoa, G. Pena, M. C. Perez, High Frequency Impedance Spectroscopy Study of Passive Films Formed on AISI 316 Stainless Steel in Alkaline Medium, J Electroanalytical Chem Vol. 572 (2004), 335-345.

DOI: 10.1016/j.jelechem.2004.01.015

Google Scholar

[23] R. Bhola, S. M. Bhola, B. Mishra, D. L. Olson, Electrochemical Evaluation of Wrought Titanium 15 Molybdenum Alloy for Dental Implant Applications in Phosphate Buffer Saline, Portugaliae Electrochemica Acta Vol. 28 (2010), 135-142.

Google Scholar

[24] W. Aperador, J. C. Caicedo, R. Vera, Assessment of the Corrosion Resistance of Fermanal Steel Coated With TiC(N)/TiNb(CN) Heterostructures for Use As a Biomaterial, Int. J. Electrochem. Sci. Vol. 8 (2013), 2778 -2790.

Google Scholar

[25] K. Hitzig, W. J. Juttner, W. Lorenz, J. Paatsch, AC-impedance measurements on corroded porous aluminum oxide. Lms, J Electrochem Soc Vol. 133 No. 5 (1986), 887-892.

DOI: 10.1149/1.2108756

Google Scholar

[26] F. Mansfeld, M. W. Kendig, Evaluation of anodiized aluminum surfaces with electrochemical impedance spectroscopy, J Electrochem Soc Vol. 135 No. 4 (1988), 828-833.

DOI: 10.1149/1.2095786

Google Scholar

[27] DOE Fundamentals Handbook Chemistry Vol 1 of 2 - DOE-HDBK-1015/1-93 Jan (1993).

Google Scholar

[28] L. A. Rocha, E. Ariza, A. M. Costa, F. J. Oliveira, R. F. Silva, Electrochemical Behavior of Ti/Al2O3 Interfaces Produced by Diffusion Bonding, Materials Research Vol. 6 (2003), 439-444.

DOI: 10.1590/s1516-14392003000400002

Google Scholar

[29] D. D. Macdonald, The history of the Point Defect Model for the passive state: A brief review of film growth aspects, Electrochimica Acta Vol. 56 (2011), 1761–1772.

DOI: 10.1016/j.electacta.2010.11.005

Google Scholar