New Algorithm to Determine the Yield Stress from FIMEC Test

Article Preview

Abstract:

The indentation test is one of the most common techniques for the mechanical characterization of materials. Different tests have been standardized, depending on punch geometry and indentation parameters, and different models have also been set up to predict indentation hardness and to estimate uni-axial mechanical properties for all the geometries (cone, wedge, pyramid, sphere, etc.). A flat-ended cylindrical indentation technique (FIMEC) has been developed by one of the present authors. FIMEC employs a cylindrical punch with diameter ranging from 3.0 to 0.5 mm and gives pressure-penetration curves from which yield stress and elasticity modulus can be determined. The specific characteristics of FIMEC are: 1-the high simplicity of the apparatus; 2-the possibility to get information about the local material properties on a scale large enough to include many grains (data represent bulk characteristics and are not influenced by those factors which dramatically affect micro-and nanoindentation tests); 3-the large versatility in industrial applications such as the control of welding quality, 4-the on-line monitoring of forging or extrusion processes etc.. This paper describes a new algorithm developed to calculate the yield stress from FIMEC curves. To assess the reliability of the method, it has been tested on several metals of known characteristics and the scattering of data with respect those from tensile tests resulted to be within ±7%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2272-2277

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Gondi, R. Montanari, A. Sili, J. of Nuclear Materials, 212-215 (1994) 1688.

Google Scholar

[2] P. Gondi, A. Donato, R. Montanari, A. Sili, J. of Nuclear Materials 233-237 (1996) 1557.

Google Scholar

[3] A. Donato, P. Gondi, R. Montanari, F. Moreschi, A. Sili, S. Storai, J. of Nuclear Materials 258-263 (1998) 446.

DOI: 10.1016/s0022-3115(98)00428-0

Google Scholar

[4] S. Missori, R. Montanari, A. Sili, La Metallurgia Italiana 3 (2001) 35.

Google Scholar

[5] G. Filacchioni, R. Montanari, M. E. Tata, L. Pilloni, J. of Nuclear Materials 307-311 (2002) 1563.

Google Scholar

[6] G. Costanza, R. Montanari, F. Quadrini, M.E. Tata, Proc. 5th Int. Conf. THE COATINGS, Kassandra October 2005, p.345.

Google Scholar

[7] G. Costanza, R. Montanari, M.E. Tata, La Metallurgia Italiana 5 (2006) 27.

Google Scholar

[8] B. Iacovone, S. Libardi, A. Molinari, R. Montanari, P. Plini, J. of Testing and Evaluation, (2008) 36.

Google Scholar

[9] I. Cappelloni, P. Deodati, R. Montanari, A. Moriani. Adv. Mater. Res. Vol. 89-91 (2010), 751.

DOI: 10.4028/www.scientific.net/amr.89-91.751

Google Scholar

[10] K.L. Johnson, Contact Mechanics, Cambridge University Press (1985) 153-201.

Google Scholar

[11] B. Riccardi, R. Montanari, Materials Science and Engineering A, 381/1-2 (2004) 281.

Google Scholar

[12] H.Y. Yu, M.A. Imam, B.B. Rath, J. of Mater. Science 20 (1985) 636.

Google Scholar

[13] R.T. Shield, Proc. of Royal Society A233 (1955) 267.

Google Scholar

[14] G. Eason, R.T. Shield, Zeitschrift für Angewandte Mathematik und Physik 11 (1960) 33.

Google Scholar

[15] C. Cristalli, S. Storai, N. Bettocchi, poster at DERIVIN summer school-MATTER Project.

Google Scholar

[16] L.O. Schafer, H. Kempe, MANET-II- Primärbericht, p.11.

Google Scholar

[17] F. Tavassoli, DEMO Interim Structural Design Criteria, Appendix A Material Design Limit Data, A3. S18F IEA F82H Steel, p.18.

Google Scholar

[18] F. Tavassoli, DEMO Interim Structural Design Criteria, Appendix A Material Design Limit Data, A3. S18E Eurofer Steel, p.19.

Google Scholar

[19] G. Filacchioni, Private report.

Google Scholar

[20] B.W. Christ, Effect of Specimen Preparation, Setup and Test Procedures on Test Results, Metals Handbook, 9th ed., Vol 8, 32.

Google Scholar