Impact of Metallurgical Size Effects on Plasticity of Thin Metallic Materials

Article Preview

Abstract:

Three examples involving size effects are presented with implications concerning the formability: small Ni-20wt.%Cr resistive bridges, magnetic micro-sensors performed with (Ni, Co, Fe) based alloys and copper clad aluminum thin wires. The mechanical properties are directly linked to the ratio thickness over grain size (t/d ratio) of the parts. These metallurgical considerations must be taken into account when we are concerned by the numerical simulation of the process of such components. It is shown that the simulations can correctly reproduce the softening effect linked to a decrease in thickness and in number of grains across the thickness: the quality of the final shape strongly depends on the number of grains across the thickness. Finally the effect of a moderate increase in temperature on these results will be briefly reported.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2290-2295

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.J.M. Janssen, T.H. de Keijser, M.G.D. Geers, An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness, Mater. Sci. Eng. A 419 (2006) 238-248.

DOI: 10.1016/j.msea.2005.12.029

Google Scholar

[2] E. Hug, C. Keller, Intrinsic Effects due to the Reduction of Thickness on the Mechanical Behavior of Nickel Polycrystals, Metall. Mater. Trans. A 41 (2010) 2498-2506.

DOI: 10.1007/s11661-010-0286-3

Google Scholar

[3] C. Keller, E. Hug, X. Feaugas, Microstructural size effects on mechanical properties of high purity nickel, Int. J. Plast. 27 (2011) 635-654.

DOI: 10.1016/j.ijplas.2010.08.002

Google Scholar

[4] A.W. Thompson, Use of non-polycrystal specimens in mechanical behaviour tests, Scripta Metall. 8 (1973) 145-148.

Google Scholar

[5] J. Moreland, Micromechanical instruments for ferromagnetic measurements, J. Phys. D: Appl. Phys. 36 (2003) R39-R51.

DOI: 10.1088/0022-3727/36/5/201

Google Scholar

[6] E. Hug, V. -E. Iordache, N. Buiron, New perspectives for magnetomechanical coupling in high-purity nickel, IEEE Trans. Magn. 38 (2002) 2820-2822.

DOI: 10.1109/tmag.2002.803569

Google Scholar

[7] N. Bellido, A. Pautrat, C. Keller, E. Hug, Direct correlation between strengthening mechanisms and electrical noise in strained copper wires, Phys. Rev. B 83 (2011) 104-108.

DOI: 10.1103/physrevb.83.104108

Google Scholar

[8] A. Abdollah-Zadeh, T. Saeid, B. Sazgari, Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, J Alloy Compd 460 (2008) 535-538.

DOI: 10.1016/j.jallcom.2007.06.009

Google Scholar

[9] M. Braunovic, N. Alexandrov, Intermetallic compounds at aluminium-to-copper electrical interfaces: effect of temperature and electric current, IEEE Trans Comp Pack Manufact Techn. 17 (1994) 78-84.

DOI: 10.1109/95.296372

Google Scholar

[10] E. Hug, N. Bellido, Brittleness study of intermetallic (Cu, Al) layers in Copper Clad Aluminium thin wires, Mater. Sci. Eng. A A528 (2011) 7103-7106.

DOI: 10.1016/j.msea.2011.05.077

Google Scholar

[11] W. -B. Lee, K. -S. Bang, S. -B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing, J Alloy Compd 390 (2005) 212-219.

DOI: 10.1016/j.jallcom.2004.07.057

Google Scholar

[12] D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures, Material Science and Engineering, A113 (1989) 1-41.

DOI: 10.1016/0921-5093(89)90290-6

Google Scholar

[13] C. Keller, M. Afteni, M. Banu, A.M. Habraken, E. Hug, S. Castagne, L. Duchêne, Influence of surface effect on Nickel micro deep drawing process, AIP Conf. Proc. 1252 (2010) 1025-1030.

DOI: 10.1063/1.3457495

Google Scholar

[14] L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects, J. Mech. Phys. Sol. 52 (2004) 2379-2401.

DOI: 10.1016/j.jmps.2004.03.007

Google Scholar

[15] M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Sol. 50 (2002) 5-32.

DOI: 10.1016/s0022-5096(01)00104-1

Google Scholar

[16] C. Keller, E. Hug, A.M. Habraken, L. Duchene, Finite element analysis of the free surface effects on the mechanical behavior of thin nickel polycrystals, Int. J. Plast. 29 (2012) 155-172.

DOI: 10.1016/j.ijplas.2011.08.007

Google Scholar

[17] A. Diehl, U. Engel, M. Geiger, Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils, Int. J. Adv. Manufact. Techn. 47 (2010) 53-61.

DOI: 10.1007/s00170-008-1851-4

Google Scholar

[18] M.W. Fu, B. Yang, W.L. Chan, Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet, J. Mat. Proc. Techn. 213 (2013) 101-110.

DOI: 10.1016/j.jmatprotec.2012.08.007

Google Scholar

[19] A. Molotnikov, R. Lapovok, C.F. Gu, C.H.J. Davies, Y. Estrin, Size effects in micro cup drawing, Mater. Sci. Eng. A 550 (2012) 312-319.

DOI: 10.1016/j.msea.2012.04.079

Google Scholar

[20] P.A. Dubos, E. Hug, S. Thibault, M.B. Bettaieb, C. Keller, Size effects in thin face centered cubic metals for different complex forming loadings, Metall. Mater. Trans. A To be published (2013).

DOI: 10.1007/s11661-013-1892-7

Google Scholar

[21] E. Hug, P.A. Dubos, C. Keller, Temperature dependence and size effects on strain hardening mechanisms in copper polycrystals, Mater. Sci. Eng. A 574 (2013) 253-261.

DOI: 10.1016/j.msea.2013.03.025

Google Scholar