Magnetic Properties of Off-Stoichiometric Ni-X-In (X=Mn, Fe and Co) Magnetic Shape Memory Alloys by First-Principles Calculations

Article Preview

Abstract:

The magnetic properties of the off-stoichiometric Ni2XIn (X=Mn, Fe, Co) are systematically investigated by means of the first–principles calculations within the framework of the density functional theory (DFT) using the Vienna ab initio software package (VASP). The magnitude of the variation in the Ni moments is much larger than that of Mn in the defective Ni2XIn. The value of the Ni magnetic moment sensitively depends on the distance between Ni and X.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2419-2422

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto,O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature, 439 (2006) 957-960.

DOI: 10.1038/nature04493

Google Scholar

[2] K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, K. Ishida, S. Okamoto, O. Kitakami, T. Kanomata, Effect of magnetic field on martensitic transition of Ni46Mn41In13 alloy, Appl. Phys. Lett. 88 (2006) 122507.

DOI: 10.1063/1.2187414

Google Scholar

[3] T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys, Phys. Rev. B 73 (2006) 174413.

DOI: 10.1103/physrevb.73.174413

Google Scholar

[4] W. Cai, Y. Feng, J. H. Sui, Z. Y. Gao, G. F. Dong, Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons, Scripta Mater. 58 (2008) 830-833.

DOI: 10.1016/j.scriptamat.2007.12.035

Google Scholar

[5] J. Bai, N. Xu, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, L. Zuo, First-principles investigations of crystallographic, magnetic, and electronic structures in Ni2XIn, J. Appl. Phys. 112 (2012) 114901.

DOI: 10.1063/1.4767331

Google Scholar

[6] J. Hafner, Atomic-scale computational materials science, Acta Mater. 48 (2000) 71-92.

Google Scholar

[7] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[8] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[9] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[10] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[11] J. Bai, N. Xu, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, L. Zuo, Defect formation energy and magnetic properties of off-stoichiometric Ni-Mn-In alloys by first-principles, J. Appl. Phys. 113 (2013) 174901.

DOI: 10.1063/1.4803139

Google Scholar