Controllable Electrostriction of Polyurethane Film

Article Preview

Abstract:

Although their experimental errors can be observed, pure polyurethane (PU) elastomers are one of the most important class of polymers due to some remarkable electromechanical characteristics such as large electric field induced strain, high specific energy and fast speed of response. In order to obtain the large strain at low electric field, a dependence of the solidification condition on strain was investigated for pure polyurethane films. Optimum solidification condition to get thin film with 19 μm thickness remarkably enhanced the strain at high electric field at high electric filed, although they show the low strain at low electric field at low electric filed. The starting point of the convergence occurred at a lower electric field for the solidification condition to get thick film with 150 μm thickness as opposed to for the optimum condition to obtain the thin film with 19 μm thickness. Based on results of crystalline volume fraction and crystalline periodicity, strongly attributed to not only polarization, but also electrostriction, the strain was controlled by the solidification condition. The optimum solidified samples do not have convergence until 20 MV/m. Based on the prediction and experimental results, the electrostriction of PU films depended on its solidification condition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2429-2432

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. E. Pelrine, R. D. Kornbluh and J. P. Joseph, Sensors and Actuators, A 64 (1998) 77-85.

Google Scholar

[2] Su J., Harrison J. S. and St Clair T., Proc. of 12th ISAF, 2 (2000) 811-814.

Google Scholar

[3] T. Mirfakhrai, J. D. W. Madden and R. H. Baughman, Materialstoday, 10 (2007) 30-38.

Google Scholar

[4] L. Lebrun, D. Guyomar, B. Guiffard, P. -J. Cottinet, C. Putson, Sensors and Actuators, A 153 (2009) 251-257.

DOI: 10.1016/j.sna.2009.05.009

Google Scholar

[5] M. Zhenyi, J. I. Scheinbeinm, J. W. Lee and B. A. Newman, J. Polym. Sci., Part B, 32 (1994) 2721-2731.

Google Scholar

[6] T. Hirai, H. Sadatoh, T. Ueda, T. Toshiaki, Y. Kurita, M. Hirai and S. Hayashi, Die Angewandte Makromolekulare Chemie 240 (1996) 221-229.

DOI: 10.1002/apmc.1996.052400121

Google Scholar

[7] J. Su, Q. M. Zhang and R. Y. Ting, Appl. Phys. Lett., 71 (1997) 386-388.

Google Scholar

[8] J. Su, Q. M. Zhang, C. H. Kim, R. Y. Ting and R. Capps, J. Appl. Polym. Sci., 65 (1997) 1363-1370.

Google Scholar

[9] Q. M. Zhang, J. Su, C. H. Kim, R. Ting and R. Capps, J. Appl. Phys., 81 (1997) 2770-2776.

Google Scholar

[10] I. Diaconu, D. -O. Dorohoi, C. Ciobanu, Rom. Journ. Phys., 53 (2008) 91-97.

Google Scholar

[11] M. Kanda, K. Yuse, B. Guiffard, L. Lebrun, Y. Nishi and D. Guyomar, Materials Transactions 53 (2012) 1806-1809.

DOI: 10.2320/matertrans.maw201208

Google Scholar

[12] K. Yuse, D. Guyomar, M. Kanda, L. Seveyrat and B. Guiffard, Sensors and Actuators A 165 (2011) 147-154.

DOI: 10.1016/j.sna.2010.08.008

Google Scholar

[13] D. Guyomar, K. Yuse, P. -J. Cottinet, M. Kanda, L. Lebrun, J. Appl. Phys., 108 (2010) 114910.

Google Scholar

[14] R. C. R. Nunes, R. A. Pereira, J. L. C. Fonseca and M.R. Pereira, Polymer Testing, 20 (2001) 707-712.

Google Scholar

[15] Li-Fen Wang, Polymer, 48 (2007) 7414-7418.

Google Scholar

[16] Samy A. Madbouly and Joshua U. Otaigbe, Progress in Polymer Science, 34 (2009) 1283-1332.

Google Scholar