[1]
N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminium and iron produced by ARB and annealing, Scripta Mater. 47 (2002) 893-899.
DOI: 10.1016/s1359-6462(02)00282-8
Google Scholar
[2]
C. Y. Yu, P. W. Kao, C. P. Chang, Transition of tensile deformation behaviours in ultrafine-grained aluminium, Acta Mater. 53 (2005) 4019-4028.
DOI: 10.1016/j.actamat.2005.05.005
Google Scholar
[3]
M. A. Meyers, A. Mishra, D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427-556.
Google Scholar
[4]
X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science 312 (2006) 249-251.
DOI: 10.1126/science.1124268
Google Scholar
[5]
N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed, Acta Mater. 57 (2009) 4198–4208.
DOI: 10.1016/j.actamat.2009.05.017
Google Scholar
[6]
H.W. Zhang, K. Lu, R. Pippan, X. Huang, N. Hansen, Enhancement of strength and stability of nanostructured Ni by small amounts of solutes, Scripta Mater. 65 (2011) 481-484.
DOI: 10.1016/j.scriptamat.2011.06.003
Google Scholar
[7]
X. Huang, N. Kamikawa, N. Tsuji, N. Hansen, Nanostructured aluminum and IF steel produced by rolling: comparative study, ISIJ International 48 (2008) 1080-1087.
DOI: 10.2355/isijinternational.48.1080
Google Scholar
[8]
X. Huang, Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation, Scripta Mater. 60 (2009) 1078-1082.
DOI: 10.1016/j.scriptamat.2009.02.018
Google Scholar
[9]
J. Kidmose, L. Lu, G. Winther, N. Hansen and X. Huang, Strain distribution during tensile deformation of nanostructured aluminium samples, J. Mater. Sci. 47 (2012) 7901-7907.
DOI: 10.1007/s10853-012-6718-2
Google Scholar
[10]
R. Song, D. Ponge, D. Raabe, Improvement of the work hardening rate of ultrafine grained steels through second phase particles, Scripta Mater. 52 (2005) 1075-1080.
DOI: 10.1016/j.scriptamat.2005.02.016
Google Scholar
[11]
N. Takata, Y. Ohtake, K. Kita, K. Kitagawa, N. Tsuji, Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates, Scripta Mater. 60 (2009) 590-593.
DOI: 10.1016/j.scriptamat.2008.12.018
Google Scholar
[12]
T. Huang, Q. Dong, X. Gong, N. Hansen, Q. Liu, X. Huang, Cold-rolled nanostructured super-pure Al (99. 9996 %) containing 1 % Si particles: structure and strength, J. Mater. Sci. 47 (2012) 7914 - 7920.
DOI: 10.1007/s10853-012-6700-z
Google Scholar
[13]
N. Kamikawa, Ph.D. Thesis, Osaka University, (2005).
Google Scholar
[14]
G. Christiansen, J. R. Bowen, J. Lindbo, Electrolytic preparation of metallic thin foils with large electron-transparent regions, Mater. Charact. 49 (2002) 331-335.
DOI: 10.1016/s1044-5803(03)00032-9
Google Scholar
[15]
Q. Liu, A simple and rapid method for determining orientations and misorientations of crystalline specimens in TEM, Ultramicroscopy 60 (1995) 81-89.
DOI: 10.1016/0304-3991(95)00049-7
Google Scholar
[16]
H. S. Rosenbaum, D. Turnbull, Metallographic investigation of precipitation of silicon from aluminium, Acta Metall. 7 (1959) 664-674.
DOI: 10.1016/0001-6160(59)90143-9
Google Scholar
[17]
Nakagawa, K., Kanadani, T., Tsuji, N., Terada, D., Masui, T., Sato, Y. (2011). Effect of aging treatment on ultra-fine grains and Si-phase in Al-0. 5%Si alloy fabricated by ARB process, Mater. Trans. 52 (2011) 1853-1859.
DOI: 10.2320/matertrans.l-m2011819
Google Scholar
[18]
Yu T, Hansen N, Huang X. Recovery by triple junction motion in aluminium deformed to ultrahigh strains, Proc. R. Soc. A. 467 (2011) 3039-3065.
DOI: 10.1098/rspa.2011.0097
Google Scholar