Effect of Second Phase Particles on the Tensile Instability of a Nanostructured Al-1%Si Alloy

Article Preview

Abstract:

A nanostructured Al-1%Si alloy containing dispersed Si particles was produced by heavily cold-rolling to study the effect of second phase particles on the tensile instability of nanostructured metals. Tensile tests were conducted on the as-deformed sample and the samples after recovery annealing treatments. The structural features of deformed and annealed samples were characterized by transmission electron microscopy. By comparing with the behavior of nanostructured commercial purity Al without dispersed particles, a remarked improvement in the tensile stability was found. This is related to a prevention of localized deformation by the presence of finely dispersed Si particles in the nanoscale matrix structure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2629-2634

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminium and iron produced by ARB and annealing, Scripta Mater. 47 (2002) 893-899.

DOI: 10.1016/s1359-6462(02)00282-8

Google Scholar

[2] C. Y. Yu, P. W. Kao, C. P. Chang, Transition of tensile deformation behaviours in ultrafine-grained aluminium, Acta Mater. 53 (2005) 4019-4028.

DOI: 10.1016/j.actamat.2005.05.005

Google Scholar

[3] M. A. Meyers, A. Mishra, D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427-556.

Google Scholar

[4] X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science 312 (2006) 249-251.

DOI: 10.1126/science.1124268

Google Scholar

[5] N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed, Acta Mater. 57 (2009) 4198–4208.

DOI: 10.1016/j.actamat.2009.05.017

Google Scholar

[6] H.W. Zhang, K. Lu, R. Pippan, X. Huang, N. Hansen, Enhancement of strength and stability of nanostructured Ni by small amounts of solutes, Scripta Mater. 65 (2011) 481-484.

DOI: 10.1016/j.scriptamat.2011.06.003

Google Scholar

[7] X. Huang, N. Kamikawa, N. Tsuji, N. Hansen, Nanostructured aluminum and IF steel produced by rolling: comparative study, ISIJ International 48 (2008) 1080-1087.

DOI: 10.2355/isijinternational.48.1080

Google Scholar

[8] X. Huang, Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation, Scripta Mater. 60 (2009) 1078-1082.

DOI: 10.1016/j.scriptamat.2009.02.018

Google Scholar

[9] J. Kidmose, L. Lu, G. Winther, N. Hansen and X. Huang, Strain distribution during tensile deformation of nanostructured aluminium samples, J. Mater. Sci. 47 (2012) 7901-7907.

DOI: 10.1007/s10853-012-6718-2

Google Scholar

[10] R. Song, D. Ponge, D. Raabe, Improvement of the work hardening rate of ultrafine grained steels through second phase particles, Scripta Mater. 52 (2005) 1075-1080.

DOI: 10.1016/j.scriptamat.2005.02.016

Google Scholar

[11] N. Takata, Y. Ohtake, K. Kita, K. Kitagawa, N. Tsuji, Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates, Scripta Mater. 60 (2009) 590-593.

DOI: 10.1016/j.scriptamat.2008.12.018

Google Scholar

[12] T. Huang, Q. Dong, X. Gong, N. Hansen, Q. Liu, X. Huang, Cold-rolled nanostructured super-pure Al (99. 9996 %) containing 1 % Si particles: structure and strength, J. Mater. Sci. 47 (2012) 7914 - 7920.

DOI: 10.1007/s10853-012-6700-z

Google Scholar

[13] N. Kamikawa, Ph.D. Thesis, Osaka University, (2005).

Google Scholar

[14] G. Christiansen, J. R. Bowen, J. Lindbo, Electrolytic preparation of metallic thin foils with large electron-transparent regions, Mater. Charact. 49 (2002) 331-335.

DOI: 10.1016/s1044-5803(03)00032-9

Google Scholar

[15] Q. Liu, A simple and rapid method for determining orientations and misorientations of crystalline specimens in TEM, Ultramicroscopy 60 (1995) 81-89.

DOI: 10.1016/0304-3991(95)00049-7

Google Scholar

[16] H. S. Rosenbaum, D. Turnbull, Metallographic investigation of precipitation of silicon from aluminium, Acta Metall. 7 (1959) 664-674.

DOI: 10.1016/0001-6160(59)90143-9

Google Scholar

[17] Nakagawa, K., Kanadani, T., Tsuji, N., Terada, D., Masui, T., Sato, Y. (2011). Effect of aging treatment on ultra-fine grains and Si-phase in Al-0. 5%Si alloy fabricated by ARB process, Mater. Trans. 52 (2011) 1853-1859.

DOI: 10.2320/matertrans.l-m2011819

Google Scholar

[18] Yu T, Hansen N, Huang X. Recovery by triple junction motion in aluminium deformed to ultrahigh strains, Proc. R. Soc. A. 467 (2011) 3039-3065.

DOI: 10.1098/rspa.2011.0097

Google Scholar