The Role of Deformation Banding in Grain Refinement under ECAP

Article Preview

Abstract:

The mechanism of grain refinement in an Al-5.4Mg-0.4Mn-0.2Sc-0.09Zr alloy subjected to equal-channel angular pressing (ECAP) at 300°C through route BC is considered. It was shown that the formation of geometrically necessary boundaries (GNB) aligned with a {111} plane at ε≤1 initiates the occurrence of continuous dynamic recrystallization (CDRX). Upon further strain the GNBs transform to low-to-moderate angle planar boundaries that produces lamellar structure. In the strain interval 2-4, 3D arrays of planar boundaries evolve due to inducing the formation of 2nd order and higher orders families of GNBs in new {111} planes. GNBs gradually convert to high-angle boundaries (HAB) with strain. A uniform recrystallized structure is produced at a true strain of ∼8. The role of slip concentration and shearing patterns in the formation of GNBs is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2641-2646

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kaibyshev, K. Shipilova,F. Musin F, Y. Motohashi, Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion, Mater Sci Eng A 396 (2005) 341-351.

DOI: 10.1016/j.msea.2005.01.053

Google Scholar

[2] Y. Huang, J.D. Robson, P.B. Prangnell, The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al-4 wt. % Cu alloy, Acta Mater 58 (2010) 1643-1657.

DOI: 10.1016/j.actamat.2009.11.008

Google Scholar

[3] I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Grain refinement in aluminum alloy 2219 during ECAP at 250 °C, Mater Sci Eng A 473 (2008) 297-305.

DOI: 10.1016/j.msea.2007.04.112

Google Scholar

[4] Ch. Xu, M. Furukawa, Z. Horita, T.G. Langdon, The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP, Mater Sci Eng A 398 (2005) 66-76.

DOI: 10.1016/j.msea.2005.03.083

Google Scholar

[5] D.A. Hughes, N. Hansen, D.J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations, Scr Mater 48 (2003) 147-153.

DOI: 10.1016/s1359-6462(02)00358-5

Google Scholar

[6] R. Kaibyshev, E. Avtokratova, A. Apollonov, R. Davies, High strain rate superplasticity in an Al-Mg-Sc-Zr alloy subjected to simple thermomechanical processing, Scr Mater 54 (2006) 2119-2124.

DOI: 10.1016/j.scriptamat.2006.03.020

Google Scholar

[7] R. Kaibyshev, F. Musin, E. Avtokratova, Y. Motohashi, Deformation behavior of a modified 5083 aluminum alloy, Mater Sci Eng A 392 (2005) 373-379.

DOI: 10.1016/j.msea.2004.10.002

Google Scholar

[8] A. Belyakov, T. Sakai, R. Kaibyshev, New grain formation during warm deformation of ferritic stainless steel, Metall Mater Trans 29 (1998) 161-167.

DOI: 10.1007/s11661-998-0169-z

Google Scholar

[9] A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater Sci Eng A 560 (2013) 178-192.

DOI: 10.1016/j.msea.2012.09.054

Google Scholar

[10] P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals, second ed., Krieger, New York, (1977).

Google Scholar

[11] G. Winther, X. Huang, A. Godfrey, N. Hansen, Critical comparison of dislocation boundary alignment studied by TEM and EBSD: Technical issues and theoretical consequences, Acta Mater 52 (2004) 4437-4446.

DOI: 10.1016/j.actamat.2004.05.050

Google Scholar