Processing Different Magnesium Alloys through HPT

Article Preview

Abstract:

High-Pressure Torsion (HPT) is widely used to refine the structure of metallic materials through the use of severe plastic deformation. This technique is used in this report to process different magnesium alloys using various processing conditions. The high hydrostatic pressure allows processing of these materials at room temperature without cracking. The structure was characterized and hardness distribution was determined at different areas of the processed samples. The results show significant structure refinement and increased hardness. The evolution of the structure and hardness depends on the alloying and HPT processing conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2617-2622

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[2] R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, B. Baudelet, Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation, Acta Mater. 44 (1996) 4705-4712.

DOI: 10.1016/s1359-6454(96)00156-5

Google Scholar

[3] K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hidrogen storage capacity with equivalent strain, Scripta Mater. 64 (2011) 880-883.

DOI: 10.1016/j.scriptamat.2011.01.023

Google Scholar

[4] M. Kai, Z. Horita, T.G. Langdon, Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A 488 (2008) 117-124.

DOI: 10.1016/j.msea.2007.12.046

Google Scholar

[5] A. Al-Zubaydi, R.B. Figueiredo, Y. Huang, T.G. Langdon, Structural and hardness inhomogeneities in Mg-Al-Zn alloys processed by high-pressure torsion, J. Mater. Sci. 48 (2013) 4661-4670.

DOI: 10.1007/s10853-013-7176-1

Google Scholar

[6] D.J. Lee, E.Y. Yoon, L.J. Park, H.S. Kim, The dead metal zone in high-pressure torsion, Scripta Mater. 67 (2012) 384-387.

DOI: 10.1016/j.scriptamat.2012.05.024

Google Scholar

[7] L. Balogh, R.B. Figueiredo, T. Ungár, T.G. Langdon, The contributions of grain size, dislocation density and twinning to the strength of a magnesium alloy processed by ECAP, Mater. Sci. Eng. A528 (2010) 533-538.

DOI: 10.1016/j.msea.2010.09.048

Google Scholar

[8] K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan, Equal channel angular pressing of magnesium alloy AZ31, Mater. Sci. Eng. A410-411 (2005) 324-327.

DOI: 10.1016/j.msea.2005.08.123

Google Scholar

[9] H.Y. Chao, H.F. Sun, W.Z. Chen, E.D. Wang, Static recrystallization kinetics of a heavily cold drawn AZ31 magnesium alloy under annealing treatment, Mater. Char. 62 (2011) 312-320.

DOI: 10.1016/j.matchar.2011.01.007

Google Scholar

[10] G.M. Xie, Z.Y. Ma, L. Geng, Effect of microstructural evolution on mechanical properties of friction stie welded ZK60 alloy, Mater. Sci. Eng. A486 (2008) 49-55.

DOI: 10.1016/j.msea.2007.08.043

Google Scholar

[11] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Mater. Sci. Eng. A433 (2006) 50-54.

DOI: 10.1016/j.msea.2006.06.089

Google Scholar

[12] H. Watanabe, K. Moriwaki, T. Mukai, T. Ohsuna, K. Hiraga, K. Higashi, Materials Processing for Structural Stability in a ZK60 Magnesium Alloy, Mater. Trans. 44 (2003) 775-781.

DOI: 10.2320/matertrans.44.775

Google Scholar

[13] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, The effect of precipitates on the mechanical properties of ZK60-Y alloy, Mater. Sci. Eng. A 420 (2006) pp.322-332.

DOI: 10.1016/j.msea.2006.01.092

Google Scholar

[14] T. Honma, T. Ohkubo, S. Kamado, K. Hono, Effect of Zn additions on the age-hardening of Mg-2. 0Gd-1. 2Y-0. 2Zr alloys, Acta Mater 55 (2007) 4137-4150.

DOI: 10.1016/j.actamat.2007.02.036

Google Scholar

[15] P. Zhang, W.J. Ding, J. Lindemann, C. Leyens, Mechanical properties of the hot-rolled Mg-12Gd-3Y magnesium alloy, Mater. Chem. Phys. 118 (2009) 453-458.

DOI: 10.1016/j.matchemphys.2009.08.017

Google Scholar

[16] L.B. Tong, X.H. Li, H.J. Zhang, Effect of long period stacking ordered phase on the microstructure, texture and mechanical properties of extruded Mg-Y-Zn alloy, Mater. Sci. Eng. A 563 (2013) 177-183.

DOI: 10.1016/j.msea.2012.10.088

Google Scholar

[17] J. Zhang, Z. Leng, S. Liu, J. Li, M. Zhang, R. Wu, Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults, J. Alloys Comp. 509 (2011) 7717-7722.

DOI: 10.1016/j.jallcom.2011.04.089

Google Scholar

[18] J. Zhang, C. Chen, W. Cheng, L. Bian, H. Wang, C. Xu, High-strength Mg93. 96Zn2Y4Sr0. 004 alloy with long-period stacking ordered structure, Mater. Sci. Eng. A 559 (2013) 416-420.

DOI: 10.1016/j.msea.2012.08.120

Google Scholar