Deformation Texture and Microstructure Evolution in Nickel and Nickel-Cobalt Alloys

Article Preview

Abstract:

Rolling texture evolution of pure nickel, and nickel – cobalt alloys containing 20wt.%, 40wt.%, 60wt.% cobalt content has been studied to very large true strain (ε ~ 4). The texture evolution in pure nickel and Ni-20Co was very similar, and resulted in typical Cu-type rolling texture. Microstructural analyses showed that the deformation was mostly slip dominated up to 95% beyond which it shear bands. Deformation twinning was a major deformation mechanism up to 50% reduction, and at higher strains, microstructure showed extensive shear banding. The evolution of final Goss texture in low SFE Ni-Co alloys could be explained based on the twin fraction and shear band volumes which showed grains preferably oriented towards Goss.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2597-2601

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Leffers, R.K. Ray, The brass-type texture and its deviation from the copper-type texture, Prog Mater Sci, 54 (2009) 351-396.

DOI: 10.1016/j.pmatsci.2008.09.002

Google Scholar

[2] J. Hirsch, K. Lücke, Mechanism of deformation and development of rolling textures in polycrystalline FCC metals. 1. Description of rolling texture development in homogeneous CuZn alloys, Acta Metall, 36 (1988) 2863-2882.

Google Scholar

[3] R.K. Ray, Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys, Acta Metall Mater, 43 (1995) 3861-3872.

DOI: 10.1016/0956-7151(95)90169-8

Google Scholar

[4] R.E. Smallman, D. Green, Dependence of rolling texture on stacking-fault energy, Acta Metall., 12 (1964) 145-154.

DOI: 10.1016/0001-6160(64)90182-8

Google Scholar

[5] W. Heye, G. Wassermann, Formation of the rolling textures in face-centered cubic metals by slip and twinning, Scr Metall, 2 (1968) 205-207.

DOI: 10.1016/0036-9748(68)90228-7

Google Scholar

[6] G. Wassermann, Der einfluss mechanischer zwillingbildung auf die entstehung der walztexturen kubisch flächenzentrierter metalle, Z Metallkd, 54 (1963) 61-65.

DOI: 10.1515/ijmr-1963-540201

Google Scholar

[7] T. Leffers, J. Bilde-Sørensen, Intra-and intergranular heterogeneities in the plastic deformation of brass during rolling, Acta Metall Mater, 38 (1990) 1917-(1926).

DOI: 10.1016/0956-7151(90)90303-x

Google Scholar

[8] T. Leffers, A. Grum-Jensen, Development of rolling texture in copper and brass, Trans Am Inst Min Metall Pet Eng, 242 (1968) 314-319.

Google Scholar

[9] T. Leffers, P. Kayworth, e Colloque Européen sur les Textures de Déformation et de Recristallisation des Métaux et leurs Applications Industrielles, Soc Francaise Metall., ICOTOM 3, (1973) 149-171.

Google Scholar

[10] E. El-Danaf, S. Kalidindi, R. Doherty, C. Necker, Deformation texture transition in brass: critical role of micro-scale shear bands, Acta Mater, 48 (2000) 2665-2673.

DOI: 10.1016/s1359-6454(00)00050-1

Google Scholar

[11] O. Engler, Acta Mater, Deformation and texture of copper-manganese alloys, 48 (2000) 4827-4840.

DOI: 10.1016/s1359-6454(00)00272-x

Google Scholar

[12] P. Gallagher, Metall Mater Trans B, The influence of alloying, temperature, and related effects on the stacking fault energy, 1 (1970) 2429-2461.

DOI: 10.1007/bf03038370

Google Scholar

[13] K. Pawlik, Determination of the orientation distribution function from pole figures in arbitrarily defined cells, phys stat solidi (b), 134 (1986) 477-483.

DOI: 10.1002/pssb.2221340205

Google Scholar

[14] J.S. Kallend, G.J. Davies, Development of texture in copper and copper-zinc alloys, Texture, 1 (1972) 51-69.

DOI: 10.1155/tsm.1.51

Google Scholar

[15] C. Donadille, R. Valle, P. Dervin, R. Penelle, Development of texture and microstructure during cold-rolling and annealing of F.C.C. alloys: Example of an austenitic stainless steel, Acta Metall, 37 (1989) 1547-1571.

DOI: 10.1016/0001-6160(89)90123-5

Google Scholar

[16] I.L. Dillamore, W.T. Roberts, Rolling textures in F.C.C. and B.C.C. metals, Acta Metall., 12 (1964) 281-293.

DOI: 10.1016/0001-6160(64)90204-4

Google Scholar

[17] K. Morii, Y. Nakayama, Shear bands in rolled copper single crystals, Trans Jpn Inst Met, 22 (1981) 857-864.

DOI: 10.2320/matertrans1960.22.857

Google Scholar

[18] P. Wagner, O. Engler, K. Lücke, Formation of Cu-type shear bands and their influence on deformation and texture of rolled f. c. c. {112} <111> single crystals, Acta Metall Mater, 43 (1995) 3799-3812.

DOI: 10.1016/0956-7151(95)90164-7

Google Scholar

[19] B. Duggan, M. Hatherly, W. Hutchinson, P. Wakefield, Deformation structures and textures in cold-rolled 70: 30 brass, Met Sci, 12 (1978) 343-351.

DOI: 10.1179/030634578790433909

Google Scholar

[20] K. Morii, M. Mera, Y. Nakayama, Rolling Deformation of the (211).

Google Scholar

[111] Single Crystals of α-Brass, Trans Jpn Inst Met, 18 (1977).

Google Scholar

[21] H. Paul, A. Morawiec, E. Bouzy, J. Fundenburger, A. Piątkowski, Brass-type shear bands and their influence on texture formation, Metall Mater Trans A, 35 (2004) 3775-3786.

DOI: 10.1007/s11661-004-0283-5

Google Scholar