[1]
N. Hansen, D. Juul Jensen, Deformed metals– structure, recrystallization and strength, Mater. Sci. Tech. 27 (2002)1229-1240.
Google Scholar
[2]
Y. Saito,H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials - development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579-583.
DOI: 10.1016/s1359-6454(98)00365-6
Google Scholar
[3]
W.Q. Cao,A. W. Godfrey, Q. Liu, EBSP study of the annealing behavior of aluminum deformed by equal channel angular processing, Mater. Sci. Eng. A 360 (2003) 420-425.
DOI: 10.1016/s0921-5093(03)00508-2
Google Scholar
[4]
H.W. Zhang, X. Huang, N. Hansen, Evolution of microstructural parameters and flow stresses toward limits in nickel deformed to ultra-high strains, Acta Mater. 56 (2008) 5451-5465.
DOI: 10.1016/j.actamat.2008.07.040
Google Scholar
[5]
O.V. Mishin, D. Juul Jensen, N. Hansen, Evolution of Microstructure and Texture during Annealing of Aluminum AA1050 Cold Rolled to High and Ultrahigh Strains, Mater. Trans, A 41 (2001) 2936-2948.
DOI: 10.1007/s11661-010-0291-6
Google Scholar
[6]
A. Belyakov, T. Sakai, H. Miura, P. Kaibyshev, K. Tsuzaki, Continuous recrystallization in austenitic stainless steel after large strain deformation, Acta Mater. 50(2002)1547-1557.
DOI: 10.1016/s1359-6454(02)00013-7
Google Scholar
[7]
D.G. Morris, M.A. Munoz-Morris, Microstructure of severely deformed Al–3Mg and its evolution during annealing, Acta Mater. 50 (2002) 4047-4060.
DOI: 10.1016/s1359-6454(02)00203-3
Google Scholar
[8]
H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: II – annealing behaviour, Acta Mater. 52 (2004) 3251- 3262.
DOI: 10.1016/j.actamat.2004.03.031
Google Scholar
[9]
G.H. Zahid, Y. Huang, P.B. Prangnell, Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure, Acta Mater. 57 (2009) 3509-3521.
DOI: 10.1016/j.actamat.2009.04.010
Google Scholar
[10]
T.B. Yu, X. Huang, N. Hansen, Recovery by triple junction motion in aluminium deformed to ultrahigh strains, Proc. Roy. Soc. A 467 (2011) 3039-3065.
DOI: 10.1098/rspa.2011.0097
Google Scholar
[11]
Q. Liu,X. Huang, D.J. Lloyd, N. Hansen, Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains, Acta Mater. 50 (2002) 3789-3802.
DOI: 10.1016/s1359-6454(02)00174-x
Google Scholar
[12]
R.A. Vandermeer, D. Juul Jensen, Microstructural path and temperature dependence of recrystallization in commercial aluminum, Acta Mater. 49 (2001) 2083-(2094).
DOI: 10.1016/s1359-6454(01)00074-x
Google Scholar
[13]
G. Wu, D. Juul Jensen, Recrystallisation Kinetics of Aluminium (AA1200) Cold Rolled to True Strain of 2, Mater. Sci. Tech. 21 (2005) 1407-1411.
DOI: 10.1179/174328405x71602
Google Scholar
[14]
G.L. Wu, D. Juul Jensen, Effect of Annealing Temperature on Recrystallisation in Al (AA1200) Cold Rolled to a True Strain of 4, Mater. Sci. Forum, 558-559 (2004) 395-400.
DOI: 10.4028/www.scientific.net/msf.558-559.395
Google Scholar
[15]
W.E. Benson, J.A. Wert, The effect of initial grain size distribution on abnormal grain growth in single-phase materials, Acta Mater. 46 (1998) 5323-5333.
DOI: 10.1016/s1359-6454(98)00220-1
Google Scholar
[16]
G.L. Wu, D. Juul Jensen, In-situ measurement of annealing kinetics of individual bulk grains in nanostructured aluminium, Phil. Mag, 92 (2012) 3381-3391.
DOI: 10.1080/14786435.2012.711494
Google Scholar
[17]
P.R. Rois, G. Gottstein, Texture evolution during normal and abnormal grain growth in an Al-1 wt% Mn alloy. Acta Mater. 49 (2001) 2511-2518.
DOI: 10.1016/s1359-6454(01)00143-4
Google Scholar
[18]
J. Dennis, P.S. Bate, F.J. Humphreys, Abnormal grain growth in Al-3. 5Cu, Acta Mater. 57 (2009) 4539-4547.
DOI: 10.1016/j.actamat.2009.06.018
Google Scholar
[19]
O.V. Mishin, A. Godfrey, D. Juul Jensen, N. Hansen, Recovery and recrystallization in commercial purity aluminium cold rolled to an ultrahigh strain, 61 (2013) 5354-5364.
DOI: 10.1016/j.actamat.2013.05.024
Google Scholar