Recrystallization Microstructure and Texture of Highly Strained Commercial Purity Aluminium Alloy

Article Preview

Abstract:

The microstructural and textural evolutions during annealing of a highly strained (ε=4.0) commercial purity aluminium (AA1200) were followed by electron backscatter diffraction (EBSD). Boundary spacings were analyzed for crystallites of different crystallographic orientations. It was found that initially during the annealing the microstructural evolution is dominated by recovery of the highly strained microstructure, while later the microstructure consists of identifiable grains nucleating and growing at the expense of deformed and recovered matrix. No much texture change occursduring early stages of annealing, whereas a cube texture evolves and dominates after complete recrystallization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

282-287

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Hansen, D. Juul Jensen, Deformed metals– structure, recrystallization and strength, Mater. Sci. Tech. 27 (2002)1229-1240.

Google Scholar

[2] Y. Saito,H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials - development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579-583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[3] W.Q. Cao,A. W. Godfrey, Q. Liu, EBSP study of the annealing behavior of aluminum deformed by equal channel angular processing, Mater. Sci. Eng. A 360 (2003) 420-425.

DOI: 10.1016/s0921-5093(03)00508-2

Google Scholar

[4] H.W. Zhang, X. Huang, N. Hansen, Evolution of microstructural parameters and flow stresses toward limits in nickel deformed to ultra-high strains, Acta Mater. 56 (2008) 5451-5465.

DOI: 10.1016/j.actamat.2008.07.040

Google Scholar

[5] O.V. Mishin, D. Juul Jensen, N. Hansen, Evolution of Microstructure and Texture during Annealing of Aluminum AA1050 Cold Rolled to High and Ultrahigh Strains, Mater. Trans, A 41 (2001) 2936-2948.

DOI: 10.1007/s11661-010-0291-6

Google Scholar

[6] A. Belyakov, T. Sakai, H. Miura, P. Kaibyshev, K. Tsuzaki, Continuous recrystallization in austenitic stainless steel after large strain deformation, Acta Mater. 50(2002)1547-1557.

DOI: 10.1016/s1359-6454(02)00013-7

Google Scholar

[7] D.G. Morris, M.A. Munoz-Morris, Microstructure of severely deformed Al–3Mg and its evolution during annealing, Acta Mater. 50 (2002) 4047-4060.

DOI: 10.1016/s1359-6454(02)00203-3

Google Scholar

[8] H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: II – annealing behaviour, Acta Mater. 52 (2004) 3251- 3262.

DOI: 10.1016/j.actamat.2004.03.031

Google Scholar

[9] G.H. Zahid, Y. Huang, P.B. Prangnell, Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure, Acta Mater. 57 (2009) 3509-3521.

DOI: 10.1016/j.actamat.2009.04.010

Google Scholar

[10] T.B. Yu, X. Huang, N. Hansen, Recovery by triple junction motion in aluminium deformed to ultrahigh strains, Proc. Roy. Soc. A 467 (2011) 3039-3065.

DOI: 10.1098/rspa.2011.0097

Google Scholar

[11] Q. Liu,X. Huang, D.J. Lloyd, N. Hansen, Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains, Acta Mater. 50 (2002) 3789-3802.

DOI: 10.1016/s1359-6454(02)00174-x

Google Scholar

[12] R.A. Vandermeer, D. Juul Jensen, Microstructural path and temperature dependence of recrystallization in commercial aluminum, Acta Mater. 49 (2001) 2083-(2094).

DOI: 10.1016/s1359-6454(01)00074-x

Google Scholar

[13] G. Wu, D. Juul Jensen, Recrystallisation Kinetics of Aluminium (AA1200) Cold Rolled to True Strain of 2, Mater. Sci. Tech. 21 (2005) 1407-1411.

DOI: 10.1179/174328405x71602

Google Scholar

[14] G.L. Wu, D. Juul Jensen, Effect of Annealing Temperature on Recrystallisation in Al (AA1200) Cold Rolled to a True Strain of 4, Mater. Sci. Forum, 558-559 (2004) 395-400.

DOI: 10.4028/www.scientific.net/msf.558-559.395

Google Scholar

[15] W.E. Benson, J.A. Wert, The effect of initial grain size distribution on abnormal grain growth in single-phase materials, Acta Mater. 46 (1998) 5323-5333.

DOI: 10.1016/s1359-6454(98)00220-1

Google Scholar

[16] G.L. Wu, D. Juul Jensen, In-situ measurement of annealing kinetics of individual bulk grains in nanostructured aluminium, Phil. Mag, 92 (2012) 3381-3391.

DOI: 10.1080/14786435.2012.711494

Google Scholar

[17] P.R. Rois, G. Gottstein, Texture evolution during normal and abnormal grain growth in an Al-1 wt% Mn alloy. Acta Mater. 49 (2001) 2511-2518.

DOI: 10.1016/s1359-6454(01)00143-4

Google Scholar

[18] J. Dennis, P.S. Bate, F.J. Humphreys, Abnormal grain growth in Al-3. 5Cu, Acta Mater. 57 (2009) 4539-4547.

DOI: 10.1016/j.actamat.2009.06.018

Google Scholar

[19] O.V. Mishin, A. Godfrey, D. Juul Jensen, N. Hansen, Recovery and recrystallization in commercial purity aluminium cold rolled to an ultrahigh strain, 61 (2013) 5354-5364.

DOI: 10.1016/j.actamat.2013.05.024

Google Scholar