[1]
S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag, Prediction of the martensite start temperature for β titanium alloys as a function of composition, Scr. Mater. 60 (2009) 611-614.
DOI: 10.1016/j.scriptamat.2008.12.034
Google Scholar
[2]
T. Zhou, M. Aindow, S.P. Alpay, M.J. Blackburn, M.H. Wu, Pseudo-elastic deformation behavior in a Ti/Mo-based alloy, Scr. Mater. 50 (2004) 343-348.
DOI: 10.1016/j.scriptamat.2003.10.012
Google Scholar
[3]
C. Lin, G. Yin, Y. Zhao, P. Ge, Z. Liu, Analysis of the effect of alloy elements on martensitic transformation in titanium alloy with the use of valence electron structure parameters, Mater. Chem. Phys. 125 (2010) 411-417.
DOI: 10.1016/j.matchemphys.2010.10.039
Google Scholar
[4]
J.I. Qazi, O.N. Senkov, J. Rahim, F.H. (Sam) Froes, Kinetics of martensite decomposition in Ti–6Al–4V–xH alloys, Materials Science and Engineering A. 359 (2003) 137-149.
DOI: 10.1016/s0921-5093(03)00350-2
Google Scholar
[5]
K. Mutombo, N.E. Mazibuko, W.E. Stumpf, S. Siyasiya, Phase evolution in Ti6Al4V alloy during thermal and thermo-mechanical treatment, 2012 RAPDASA Proceedings. (2012).
Google Scholar
[6]
S. Malinov, P. Markovsky, W. Sha, Z. Guo, Resistivity study and computer modelling of the isothermal transformation kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0. 08Si alloys, J. Alloys Compounds. 314 (2001) 181-192.
DOI: 10.1016/s0925-8388(00)01227-5
Google Scholar
[7]
J.W. Elmer, T.A. Palmer, S.S. Babu, E.D. Specht, In situ observations of lattice expansion and transformation rates of α and β phases in Ti–6Al–4V, Materials Science and Engineering A. 391 (2005) 104-113.
DOI: 10.1016/j.msea.2004.08.084
Google Scholar
[8]
S. Malinov, W. Sha, Z. Guo, C.C. Tang, A.E. Long, Synchrotron X-ray diffraction study of the phase transformations in titanium alloys, Mater Charact. 48 (2002) 279-295.
DOI: 10.1016/s1044-5803(02)00286-3
Google Scholar
[9]
A. Dehghan-Manshadi, R.J. Dippenaar, Strain-induced phase transformation during thermo-mechanical processing of titanium alloys, Materials Science and Engineering: A. 552 (2012) 451-456.
DOI: 10.1016/j.msea.2012.05.069
Google Scholar
[10]
F. Bruneseaux, E. Aeby-Gautier, G. Geandier, J. Da Costa Teixeira, B. Appolaire, P. Weisbecker, A. Mauro, In situ characterizations of phase transformations kinetics in the Ti17 titanium alloy by electrical resistivity and high temperature synchrotron X-ray diffraction, Materials Science and Engineering: A. 476 (2008).
DOI: 10.1016/j.msea.2007.04.072
Google Scholar
[11]
E. Aeby-Gautier, F. Bruneseaux, J. Da Costa Teixeira, B. Appolaire, G. Geandier, S. Denis, Microstructural formation in Ti Alloys: In-situ characterization of phase transformation kinetics, JOM. 59 (2007) 54-58.
DOI: 10.1007/s11837-007-0011-x
Google Scholar
[12]
J. Da Costa Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, F. Bruneseaux, Modeling of the effect of the β phase deformation on the α phase precipitation in near-β titanium alloys, Acta Materialia. 54 (2006) 4261-4271.
DOI: 10.1016/j.actamat.2006.05.019
Google Scholar
[13]
R. Ding, Z.X. Guo, A. Wilson, Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing, Materials Science and Engineering A. 327 (2002) 233-245.
DOI: 10.1016/s0921-5093(01)01531-3
Google Scholar
[14]
L. He, A. Dehghan-Manshadi, R.J. Dippenaar, The evolution of microstructure of Ti-6Al-4 V alloy during concurrent hot deformation and phase transformation, Materials Science and Engineering: A. (2012) 163-167.
DOI: 10.1016/j.msea.2012.04.025
Google Scholar