[1]
D. Goldstein, A source manual for information on NITINOL and TiNi, Naval Surface Weapons Center. NSWC/WOL/TR-78-26 (1978).
Google Scholar
[2]
K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[3]
S. Wu, C.Y. Chung, X. Liu, P.K. Chu, J.P.Y. Ho, C.L. Chu, Y.L. Chan, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, K.D.K. Luk, Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing, Acta Mater. 55 (2007).
DOI: 10.1016/j.actamat.2007.01.045
Google Scholar
[4]
B. Yuan, C.Y. Chung, P. Huang, M. Zhu, Superelastic properties of porous TiNi shape memory alloys prepared by hot isostatic pressing, Mater. Sci. Eng.A. 438–440 (2006) 657-660.
DOI: 10.1016/j.msea.2005.12.077
Google Scholar
[5]
P. Bassani, P. Giuliani, A. Tuissi, C. Zanotti, Thermomechanical properties of porous NiTi alloy produced by SHS, J. Mater. Eng. Perform. 18 (2009) 594-599.
DOI: 10.1007/s11665-009-9493-8
Google Scholar
[6]
S. Wisutmethangoon, N. Denmud, L. Sikong, Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique, Mater. Sci. Eng.A. 515 (2009) 93-97.
DOI: 10.1016/j.msea.2009.02.055
Google Scholar
[7]
Y. Zhao, M. Taya, Y. Kang, A. Kawasaki, Compression behavior of porous NiTi shape memory alloy, Acta Mater. 53 (2005) 337-343.
DOI: 10.1016/j.actamat.2004.09.029
Google Scholar
[8]
M. Bram, M. Köhl, H. Buchkremer, D. Stöver, Mechanical properties of highly porous NiTi alloys, J. Mater. Eng. Perform. 20 (2011) 522-528.
DOI: 10.1007/s11665-011-9854-y
Google Scholar
[9]
H. Li, B. Yuan, Y. Gao, C. Chung, M. Zhu, High-porosity NiTi superelastic alloys fabricated by low-pressure sintering using titanium hydride as pore-forming agent, J. Mater. Sci. 44 (2009) 875-881.
DOI: 10.1007/s10853-008-3193-x
Google Scholar
[10]
B. Arpak, K. Araz, İ. Nakaş, Ş. Bor, İ. Nergiz, The mechanical characterization and in-vivo evaluation of porous TiNi as graft material, Funct. Mater. Lett. 5, (2012) 1250023-1-4.
DOI: 10.1142/s1793604712500233
Google Scholar
[11]
Z. Esen, Ş. Bor, Processing of titanium foams using magnesium spacer particles, Scr. Mater. 56 (2007) 341–344.
DOI: 10.1016/j.scriptamat.2006.11.010
Google Scholar
[12]
T. Aydoğmuş, Ş. Bor, Processing of porous TiNi alloys using magnesium as space holder, J. Alloys Compd. 478 (2009) 705–710.
DOI: 10.1016/j.jallcom.2008.11.141
Google Scholar
[13]
G.İ. Nakaş, A.F. Dericioğlu, Ş. Bor, Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique, Mater. Sci. Eng.A. 582 (2013) 140–146.
DOI: 10.1016/j.msea.2013.06.011
Google Scholar
[14]
M. Barrabés, P. Sevilla, J.A. Planell, F.J. Gil, Mechanical properties of nickel–titanium foams for reconstructive orthopaedics, Mater. Sci. Eng.C. 28 (2008) 23-27.
DOI: 10.1016/j.msec.2007.02.001
Google Scholar
[15]
P. Sevilla, C. Aparicio, J.A. Planell, F.J. Gil, Comparison of the mechanical properties between tantalum and nickel–titanium foams implant materials for bone ingrowth applications, J. Alloys Compd. 439 (2007) 67-73.
DOI: 10.1016/j.jallcom.2006.08.069
Google Scholar
[16]
J. Zhou, W.O. Soboyejo, Compression–compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment, Mater. Sci. Eng.A. 369 (2004) 23-35.
DOI: 10.1016/j.msea.2003.08.009
Google Scholar
[17]
M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal foams: a design guide, Butterworth-Heinemann (2000).
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[18]
Y. Sugimura, A. Rabiei, A.G. Evans, A.M. Harte, N.A. Fleck, Compression fatigue of a cellular Al alloy, Mater. Sci. Eng.A. 269 (1999) 38-48.
DOI: 10.1016/s0921-5093(99)00147-1
Google Scholar
[19]
G.İ. Nakaş, A.F. Dericioğlu, Ş. Bor, Fatigue behavior of TiNi foams processed by the magnesium space holder technique, J. Mech. Behav. Biomed. 4 (2011) 2017 – (2023).
DOI: 10.1016/j.jmbbm.2011.06.021
Google Scholar
[20]
G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng.A. 378 (2004) 24-33.
DOI: 10.1016/j.msea.2003.10.327
Google Scholar
[21]
G.E. Dieter, Mechanical Metallurgy, SI Metric ed., McGraw-Hili Book Co., London (1988).
Google Scholar
[22]
J.E. Shigley, Mechanical Engineering Design, Third ed., McGraw-Hill Kogusha Ltd., Tokyo, Japan (1977).
Google Scholar