[1]
M. De Meyer, D. Vanderschueren, B.C. De Cooman, The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels, ISIJ Int. 39 (1999) 813-822.
DOI: 10.2355/isijinternational.39.813
Google Scholar
[2]
L. Li, Microstructure and property control of advanced high strength automotive steels, in: Y.Q. Weng, D. Han, G. Yong (Eds. ), Advanced Steels, Metallurgical Industry Press, Beijing, 2011, p.265.
DOI: 10.1007/978-3-642-17665-4_27
Google Scholar
[3]
L. Li, B.C. De Cooman, R.D. Liu, J. Vleugels, M. Zhang, W. Shi, Design of TRIP steel with high welding and galvanizing performance in light of thermodynamics and kinetics, J. Iron Steel Res. Int. 14 (2007) 37-41.
DOI: 10.1016/s1006-706x(07)60087-9
Google Scholar
[4]
L. Li, Y. Gao, N.Q. Zhu, Y.L. He, R.D. Liu, Z.P. He, W. Shi, M. Zhang, Technology for high performance TRIP steel, Sci. China Technol. Sc. 55 (2012) 1–4.
DOI: 10.1007/s11431-012-4872-z
Google Scholar
[5]
R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, H.J. Maier, Multi-phase microstructure design of a low-alloy TRIP-assisted steel through a combined computational and experimental methodology, Acta Mater. 60 (2012) 3022-3033.
DOI: 10.1016/j.actamat.2012.02.007
Google Scholar
[6]
H.K.D.H. Bhadeshia, Driving force for martensitic transformation in steels, Met. Sci. 15 (1981) 175-177.
Google Scholar
[7]
S. Chatterjee, H.K.D.H. Bhadeshia, Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation? Mater. Sci. Technol. Ser. 23 (2007) 1101-1104.
DOI: 10.1179/174328407x226536
Google Scholar
[8]
T.Y. Hsu, A thermodynamical study on martensitic transformation in Fe-C alloys, Acta Metall. Sin. 15 (1979) 329-338.
Google Scholar
[9]
H.B. Zhang, L.M. Ni, T.Y. Hsu, Thermodynamic calculation of Ms and driving force for martensitic transformation in Fe-Mn-C alloys, Acta Metall. Sin. 23 (1987) 42-49.
Google Scholar
[10]
H.B. Chang, T.Y. Hsu, Thermodynamic prediction of Ms and driving force for autensitic transformation in Fe-Mn-C alloys, Acta Metall. 34 (1986) 333-338.
DOI: 10.1016/0001-6160(86)90204-x
Google Scholar
[11]
T.Y. Hsu, H.B. Zhang, S.F. Luo, On thermodynamic calculation of Ms and on driving force for martensitic transformation in Fe-C, Acta Metall. Sin. 20 (1984) 151-161.
Google Scholar
[12]
A.B. Greninger, The martensite thermal arrest in iron-carbon alloys and plain carbon steels, Trans. ASM. 30 (1942) 1-26.
Google Scholar
[13]
G.W. Zhao, Master's Thesis, Harbin Institute of Technology, (2007).
Google Scholar
[14]
Z.C. Li, P.Y. Liu, M.G. Wang, Computation of Ms temperature in carbon equivalence method, Journal of Liaoning Technical University: Nature Science. 17 (1998) 293-295.
Google Scholar
[15]
X.F. Mao, Master's Thesis, Wuhan University of Science and Technology, (2007).
Google Scholar
[16]
T.Y. Hsu, M. Pan, Thermodynamics of martensitic transformation in Fe-Mn-C and Fe-Ni-C alloys, Acta Metall. Sin. 25 (1989) 16-22.
Google Scholar
[17]
S. Huang, R.Y. Fu, Z.F. Li, L. Lin, Influence of annealing temperature on microstructure and mechanical properties of C-Mn-P-V, Shanghai Metals. 31 (2009) 15-18.
Google Scholar
[18]
M. Zhang, L. Li, R.Y. Fu, D. Krizan, B.C. De Cooman, Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels, Mater. Sci. Eng. A. 438-440 (2006) 296-299.
DOI: 10.1016/j.msea.2006.01.128
Google Scholar
[19]
C. Zhao, D. Tang, H.T. Jiang, S.S. Zhao, H. Li, Process simulation and microstructure analysis of low carbon Si-Mn quenched and partitioned steel, J. Iron Steel Res. Int. 15 (2008) 82 -85.
DOI: 10.1016/s1006-706x(08)60149-1
Google Scholar
[20]
X. Wang, Y.L. Kang, H. Yu, L.B. Chen, Q.F. Kong, Dynamic CCT diagram of automobile beam steel with high strength produced by FTSR technology, J. Iron Steel Res. Int. 15 (2008) 60-64.
DOI: 10.1016/s1006-706x(08)60033-3
Google Scholar
[21]
Z. Li, D. Wu, R. Hu, Austempering of hot rolled Si-Mn TRIP steels, J. Iron Steel Res. Int. 13 (2006) 41-46.
DOI: 10.1016/s1006-706x(06)60093-9
Google Scholar