Thermodynamic and Kinetic Calculation of Non-Equilibrium Microstructure Design of TRIP Steel

Article Preview

Abstract:

The non-equilibrium microstructure of Fe-C-Mn-Si TRIP steel is designed bythermodynamic and kinetic calculation. The upper limit of bainitic transformation temperature iscalculated and compared to that characterized by CCT curve determination. s M temperature isdetermined based on thermodynamics of martensitic transformation and sublattice model. Thecalculation is conducted via TQ6-patch in Thermo-Calc software. Comparison between thecalculations and experiments reveals the relationship between non-equilibrium phase compositionand heat treatment parameters which can be utilized to achieve the elaborate design of alloy and heattreatment for super TRIP steel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

766-770

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. De Meyer, D. Vanderschueren, B.C. De Cooman, The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels, ISIJ Int. 39 (1999) 813-822.

DOI: 10.2355/isijinternational.39.813

Google Scholar

[2] L. Li, Microstructure and property control of advanced high strength automotive steels, in: Y.Q. Weng, D. Han, G. Yong (Eds. ), Advanced Steels, Metallurgical Industry Press, Beijing, 2011, p.265.

DOI: 10.1007/978-3-642-17665-4_27

Google Scholar

[3] L. Li, B.C. De Cooman, R.D. Liu, J. Vleugels, M. Zhang, W. Shi, Design of TRIP steel with high welding and galvanizing performance in light of thermodynamics and kinetics, J. Iron Steel Res. Int. 14 (2007) 37-41.

DOI: 10.1016/s1006-706x(07)60087-9

Google Scholar

[4] L. Li, Y. Gao, N.Q. Zhu, Y.L. He, R.D. Liu, Z.P. He, W. Shi, M. Zhang, Technology for high performance TRIP steel, Sci. China Technol. Sc. 55 (2012) 1–4.

DOI: 10.1007/s11431-012-4872-z

Google Scholar

[5] R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, H.J. Maier, Multi-phase microstructure design of a low-alloy TRIP-assisted steel through a combined computational and experimental methodology, Acta Mater. 60 (2012) 3022-3033.

DOI: 10.1016/j.actamat.2012.02.007

Google Scholar

[6] H.K.D.H. Bhadeshia, Driving force for martensitic transformation in steels, Met. Sci. 15 (1981) 175-177.

Google Scholar

[7] S. Chatterjee, H.K.D.H. Bhadeshia, Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation? Mater. Sci. Technol. Ser. 23 (2007) 1101-1104.

DOI: 10.1179/174328407x226536

Google Scholar

[8] T.Y. Hsu, A thermodynamical study on martensitic transformation in Fe-C alloys, Acta Metall. Sin. 15 (1979) 329-338.

Google Scholar

[9] H.B. Zhang, L.M. Ni, T.Y. Hsu, Thermodynamic calculation of Ms and driving force for martensitic transformation in Fe-Mn-C alloys, Acta Metall. Sin. 23 (1987) 42-49.

Google Scholar

[10] H.B. Chang, T.Y. Hsu, Thermodynamic prediction of Ms and driving force for autensitic transformation in Fe-Mn-C alloys, Acta Metall. 34 (1986) 333-338.

DOI: 10.1016/0001-6160(86)90204-x

Google Scholar

[11] T.Y. Hsu, H.B. Zhang, S.F. Luo, On thermodynamic calculation of Ms and on driving force for martensitic transformation in Fe-C, Acta Metall. Sin. 20 (1984) 151-161.

Google Scholar

[12] A.B. Greninger, The martensite thermal arrest in iron-carbon alloys and plain carbon steels, Trans. ASM. 30 (1942) 1-26.

Google Scholar

[13] G.W. Zhao, Master's Thesis, Harbin Institute of Technology, (2007).

Google Scholar

[14] Z.C. Li, P.Y. Liu, M.G. Wang, Computation of Ms temperature in carbon equivalence method, Journal of Liaoning Technical University: Nature Science. 17 (1998) 293-295.

Google Scholar

[15] X.F. Mao, Master's Thesis, Wuhan University of Science and Technology, (2007).

Google Scholar

[16] T.Y. Hsu, M. Pan, Thermodynamics of martensitic transformation in Fe-Mn-C and Fe-Ni-C alloys, Acta Metall. Sin. 25 (1989) 16-22.

Google Scholar

[17] S. Huang, R.Y. Fu, Z.F. Li, L. Lin, Influence of annealing temperature on microstructure and mechanical properties of C-Mn-P-V, Shanghai Metals. 31 (2009) 15-18.

Google Scholar

[18] M. Zhang, L. Li, R.Y. Fu, D. Krizan, B.C. De Cooman, Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels, Mater. Sci. Eng. A. 438-440 (2006) 296-299.

DOI: 10.1016/j.msea.2006.01.128

Google Scholar

[19] C. Zhao, D. Tang, H.T. Jiang, S.S. Zhao, H. Li, Process simulation and microstructure analysis of low carbon Si-Mn quenched and partitioned steel, J. Iron Steel Res. Int. 15 (2008) 82 -85.

DOI: 10.1016/s1006-706x(08)60149-1

Google Scholar

[20] X. Wang, Y.L. Kang, H. Yu, L.B. Chen, Q.F. Kong, Dynamic CCT diagram of automobile beam steel with high strength produced by FTSR technology, J. Iron Steel Res. Int. 15 (2008) 60-64.

DOI: 10.1016/s1006-706x(08)60033-3

Google Scholar

[21] Z. Li, D. Wu, R. Hu, Austempering of hot rolled Si-Mn TRIP steels, J. Iron Steel Res. Int. 13 (2006) 41-46.

DOI: 10.1016/s1006-706x(06)60093-9

Google Scholar