Study of Dislocation Substructures in High-Mn Steels by Electron Channeling Contrast Imaging

Article Preview

Abstract:

We have investigated the formation of dislocation substructures in high-Mn steels by electron channeling contrast imaging in the SEM. The coupling of electron channeling contrast imaging (ECCI) with electron backscatter diffraction (EBSD) provides an efficient and fast approach to characterize dislocation substructures under controlled diffraction conditions with enhanced contrast. The dislocation substructure of high-Mn steels at intermediate strain levels is characterized by cells and cell blocks with strong crystallographic orientation dependence. We observe a significant effect of strain path on dislocation patterning. Microband formation is enabled under shearing conditions. We explain this effect on terms of Schmid’s law.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

750-754

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Kuhlmann-Wilsdorf, The LES Theory of Solid Plasticity, in: F. R. N. Nabarro, M. S. Duesbery (Eds. ), Dislocations in Solids. Volume 11, (2002).

Google Scholar

[2] A.J. Wilkinson, P.B. Hirsch, Electron diffraction based techniques in scanning electron microscopy of bulk materials, Micron 28 (1997) 279-308.

DOI: 10.1016/s0968-4328(97)00032-2

Google Scholar

[3] D.C. Joy, D.E. Newbury, D.L. Davidson, Electron channeling patterns in the scanning electron microscope, Rev. Phys. Appl. 53 (1982) 81-122.

DOI: 10.1063/1.331668

Google Scholar

[4] E.M. Schulson, Review. Electron channelling patterns in scanning electron microscopy, J. Mater. Sci. 12 (1977) 1071-1087.

DOI: 10.1007/bf02426843

Google Scholar

[5] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Scripta Mater. 61 (2009).

DOI: 10.1016/j.scriptamat.2009.06.018

Google Scholar

[6] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Coupling of electron channeling with EBSD: towards the quantitative characterization of deformation structures in the SEM, JOM (in press).

DOI: 10.1007/s11837-013-0678-0

Google Scholar

[7] S. Zaefferer, On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns, Ultramicroscopy 107 (2007) 254-266.

DOI: 10.1016/j.ultramic.2006.08.007

Google Scholar

[8] I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt. % Mn–0. 6 wt. % C TWIP steel observed by electron channeling contrast imaging, Acta Mater. 59 (2011) 6449-6462.

DOI: 10.1016/j.actamat.2011.07.009

Google Scholar

[9] I. Gutierrez-Urrutia, D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel Acta Mater. 60 (2012) 5791-5802.

DOI: 10.1016/j.actamat.2012.07.018

Google Scholar

[10] D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Revealing the strain hardening behavior of twinning induced plasticity steels through a dislocation density- and twin evolution-based constitutive model: theory, simulations, experiments Acta Mater. 61 (2013).

DOI: 10.1016/j.actamat.2012.09.064

Google Scholar

[11] I. Gutierrez-Urrutia, D. Raabe, Microbanding mechanism in a Fe-22Mn-0. 6C (wt. %) high-Mn twinning induced plasticity steel, Scripta Mater. 69 (2013) 53-56.

DOI: 10.1016/j.scriptamat.2013.03.010

Google Scholar

[12] A. Eisenlohr, I. Gutierrez-Urrutia, D. Raabe, Adiabatic temperature increase associated with deformation twinning and dislocation plasticity, Acta Mater. 60 (2012) 3994-4004.

DOI: 10.1016/j.actamat.2012.03.008

Google Scholar

[13] I. Gutierrez-Urrutia, D. Raabe, Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope, Scripta Mater. 66 (2012) 343-346.

DOI: 10.1016/j.scriptamat.2011.11.027

Google Scholar

[14] A. Weidner, S. Martin, V. Klemm, U. Martin, H. Biermann, Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging, Scripta Mater. 64 (2011) 513–516.

DOI: 10.1016/j.scriptamat.2010.11.028

Google Scholar

[15] S. Zaefferer, New developments of computer-aided crystallographic analysis in transmission electron microscopy, J. Appl. Cryst. 33 (2000) 10-25.

DOI: 10.1107/s0021889899010894

Google Scholar

[16] I. Gutierrez-Urrutia, D. Raabe, Study of deformation twinning and planar slip in a TWIP steel by Electron Channeling Contrast Imaging in a SEM, Mater. Sci. For. 702-703 (2012) 523-529.

DOI: 10.4028/www.scientific.net/msf.702-703.523

Google Scholar

[17] I. Gutierrez-Urrutia, D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Mater. 68 (2013) 343-347.

DOI: 10.1016/j.scriptamat.2012.08.038

Google Scholar