[1]
D. Kuhlmann-Wilsdorf, The LES Theory of Solid Plasticity, in: F. R. N. Nabarro, M. S. Duesbery (Eds. ), Dislocations in Solids. Volume 11, (2002).
Google Scholar
[2]
A.J. Wilkinson, P.B. Hirsch, Electron diffraction based techniques in scanning electron microscopy of bulk materials, Micron 28 (1997) 279-308.
DOI: 10.1016/s0968-4328(97)00032-2
Google Scholar
[3]
D.C. Joy, D.E. Newbury, D.L. Davidson, Electron channeling patterns in the scanning electron microscope, Rev. Phys. Appl. 53 (1982) 81-122.
DOI: 10.1063/1.331668
Google Scholar
[4]
E.M. Schulson, Review. Electron channelling patterns in scanning electron microscopy, J. Mater. Sci. 12 (1977) 1071-1087.
DOI: 10.1007/bf02426843
Google Scholar
[5]
I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Scripta Mater. 61 (2009).
DOI: 10.1016/j.scriptamat.2009.06.018
Google Scholar
[6]
I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Coupling of electron channeling with EBSD: towards the quantitative characterization of deformation structures in the SEM, JOM (in press).
DOI: 10.1007/s11837-013-0678-0
Google Scholar
[7]
S. Zaefferer, On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns, Ultramicroscopy 107 (2007) 254-266.
DOI: 10.1016/j.ultramic.2006.08.007
Google Scholar
[8]
I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt. % Mn–0. 6 wt. % C TWIP steel observed by electron channeling contrast imaging, Acta Mater. 59 (2011) 6449-6462.
DOI: 10.1016/j.actamat.2011.07.009
Google Scholar
[9]
I. Gutierrez-Urrutia, D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel Acta Mater. 60 (2012) 5791-5802.
DOI: 10.1016/j.actamat.2012.07.018
Google Scholar
[10]
D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Revealing the strain hardening behavior of twinning induced plasticity steels through a dislocation density- and twin evolution-based constitutive model: theory, simulations, experiments Acta Mater. 61 (2013).
DOI: 10.1016/j.actamat.2012.09.064
Google Scholar
[11]
I. Gutierrez-Urrutia, D. Raabe, Microbanding mechanism in a Fe-22Mn-0. 6C (wt. %) high-Mn twinning induced plasticity steel, Scripta Mater. 69 (2013) 53-56.
DOI: 10.1016/j.scriptamat.2013.03.010
Google Scholar
[12]
A. Eisenlohr, I. Gutierrez-Urrutia, D. Raabe, Adiabatic temperature increase associated with deformation twinning and dislocation plasticity, Acta Mater. 60 (2012) 3994-4004.
DOI: 10.1016/j.actamat.2012.03.008
Google Scholar
[13]
I. Gutierrez-Urrutia, D. Raabe, Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope, Scripta Mater. 66 (2012) 343-346.
DOI: 10.1016/j.scriptamat.2011.11.027
Google Scholar
[14]
A. Weidner, S. Martin, V. Klemm, U. Martin, H. Biermann, Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging, Scripta Mater. 64 (2011) 513–516.
DOI: 10.1016/j.scriptamat.2010.11.028
Google Scholar
[15]
S. Zaefferer, New developments of computer-aided crystallographic analysis in transmission electron microscopy, J. Appl. Cryst. 33 (2000) 10-25.
DOI: 10.1107/s0021889899010894
Google Scholar
[16]
I. Gutierrez-Urrutia, D. Raabe, Study of deformation twinning and planar slip in a TWIP steel by Electron Channeling Contrast Imaging in a SEM, Mater. Sci. For. 702-703 (2012) 523-529.
DOI: 10.4028/www.scientific.net/msf.702-703.523
Google Scholar
[17]
I. Gutierrez-Urrutia, D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Mater. 68 (2013) 343-347.
DOI: 10.1016/j.scriptamat.2012.08.038
Google Scholar